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Abstract
Cyber-theft of trade secrets has become a serious business

threat. Digital watermarking is a popular technique to as-
sist in identifying the source of the file leakage, whereby a
unique watermark for each insider is hidden in sensitive files.
However, malicious insiders may use their smartphones to
photograph the secret file displayed on screens to remove
the embedded hidden digital watermarks due to the optical
noises introduced during photographing. To identify the leak-
age source despite such screen-photo-based leakage attacks,
we leverage Moiré pattern, an optical phenomenon resulted
from the optical interaction between electronic screens and
cameras. As such, we present mID, a new watermark-like tech-
nique that can create a carefully crafted Moiré pattern on the
photo when it is taken towards the screen. We design patterns
that appear to be natural yet can be linked to the identity of
the leaker. We implemented mID and evaluate it with 5 display
devices and 6 smartphones from various manufacturers and
models. The results demonstrate that mID can achieve an aver-
age bit error rate (BER) of 0.6% and can successfully identify
an ID with an average accuracy of 96%, with little influence
from the type of display devices, cameras, IDs, and ambient
lights.

1 Introduction

Cyber-theft of trade secrets is the illegal leakage of sensi-
tive business information, e.g., digital documents, images, or
codes over cyberspace. It is estimated to cause a loss of C60
billion in economic growth and 289,000 jobs in Europe alone
in 2018, and the losses are expected to be one million jobs by
2025 [26]. Such cyber-thefts are typically involved with in-
siders [44], whereby employees access confidential business
files legally yet leak them to unauthorized parties via emails
or messaging systems (e.g., WhatsApp). To identify and trace
the source of the leakage, i.e., digital forensics, companies
log files outbound from the network interface card or USB
ports [28], and insert a digital watermark [1, 7, 12, 20, 23, 29]
that is unique to an employee in each confidential file.

To avoid exposure, the adversary starts to photograph (usu-
ally with smartphones) the computer screen that displays the
confidential information and leaks it out anonymously [28].
Hereafter, we name this kind of attack as screen-photo-based
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Figure 1: An illustration of mID for screen photo forensics:
The identity (ID) of an adversary is embedded on the screen
by subtly manipulating what is being displayed and can be
recovered later by analyzing the Moiré patterns on the screen
photos.

leakage attack. After such an attack, unfortunately, the digi-
tal watermark may no longer be recognizable due to the noises
(e.g., the Gaussian and salt-and-pepper noises [4]) introduced
by both the electronic screen and the camera sensors. There-
fore, digital forensics for screen photos, i.e., photos taken
towards screens, is in urgent need.

In this paper, we propose mID, a digital forensics mecha-
nism against the aforementioned screen-photo-based leakage
attack utilizing Moiré patterns [43]. Moiré patterns are optical
phenomena generated during the process of photographing
screens and are often observed in the photos of computer
screens, TV screens, etc. Moiré patterns are ideal for screen
photo forensics because they are natural optical phenomena
and attract almost no, if any, attention of the adversary. As
shown in Fig. 1, mID works as follows: once an adversary logs
into a computer or an application (e.g., an email system) with
her account, mID will modify the displayed content slightly
based on her identity (ID), such that when she takes pictures
of the screen, the modification will create Moiré patterns in
the photos. Finally, the embedded Moiré patterns are decoded
to obtain the ID.

Photo forensics via Moiré patterns is promising yet chal-
lenging, since we have to encode IDs inside the Moiré patterns
reliably yet keep the patterns as if they are naturally generated.
In this case, a naive method [17, 30, 43, 45] that encodes IDs
by manipulating the phases of images will not work, because
it may change the display content (e.g., change a straight line
into a wavy one) or create artificial patterns in the generated



Moiré stripes. Meanwhile, mID has to adjust the encoding in
real-time as users modify the window sizes, e.g., maximize the
file viewer. Last but not the least, decoding IDs from Moiré
patterns in photos has to overcome the distortion caused by
the angle of cameras, the photo content, etc.

To overcome the aforementioned challenges, we design the
encoding and decoding schemes of mID. The key to encoding
is to have as little influence as possible on the original display
content and to find the best display areas for encoding such
that the generated Moiré patterns remain sneaky. Thus, we
first employ a vertical grating scheme to imitate the natural
screen-camera channel. Then, we modify the intensity lev-
els of pixels to generate designed Moiré patterns and exploit
the discretized bipolar non-return-to-zero (NRZ) encoding
method. Considering that humans perceive light and color in
a non-linear manner [33], we further correct the luminance
difference caused by the bipolar NRZ encoding to smoothen
the visual effect of the generated grating image. Furthermore,
mID automatically searches for suitable display areas for in-
formation embedding, such that it maximizes its possibility
of being captured in the photos. To reliably decode the ID
despite image distortion, we first extract the Moiré areas with
image rectification and window scanning. Then, we trans-
form the Moiré areas into the HSV (hue, saturation, value)
color space [49], and perform saturation balance and enlarge-
ment for high decoding efficiency. After that, we use k-means
clustering with the assistance of check codes to recover the
embedded IDs. In summary, our contribution includes below:

• We propose to exploit the natural Moiré phenomenon
existing in the screen-camera channel for screen photo
forensics. To the best of our knowledge, this is the first
work that addresses screen photo forensics. We believe
that mID is a promising technique and can work comple-
mentarily to several existing ones.

• We design mID, an effective digital forensics mechanism
for file leakages via photos utilizing Moiré patterns.

• We evaluate mID with 5 display devices and 6 smart-
phones from various manufacturers and models. The
results show that mID can achieve an average BER of
0.6% and an average NER (identity number error rate)
of 4.0%. In addition, it can operate with little influence
from display devices, cameras, IDs, and ambient lights.

2 Background

In this section, we begin with the principle and profiling of
Moiré patterns. Then, we introduce the nonlinearity of the
screen-camera channel that contributes to Moiré patterns in
the screen photos.

2.1 Moiré Pattern
Moiré patterns or Moiré fringes are interference patterns cre-
ated when opaque ruled patterns with transparent gaps are
overlaid [2]. Natural Moiré phenomena can be seen by look-
ing through the folds of a nylon curtain of small mesh, or at

(a) Periodical layer l1 (b) Periodical layer l2 (c) Superposition of l1
and l2

Figure 2: The superposition of periodical layers l1(x,y) =
0.5+ 0.5cos(y) (a) and l2(x,y) = 0.5+ 0.5cos(ycos(15◦) +
xsin(15◦)) (b) generates new frequency components (c).

two sheets of graph paper twisted 20-30 degrees to each other.
Moreover, a pattern on a TV screen, can interfere with the
shape of light sensors when photographed by a digital camera
and thus generate Moiré patterns. In this paper, we utilize
such an effect for screen photo forensics.

2.2 Moiré Pattern Profiling
Moiré patterns are usually generated by the superposition of
periodic layers [2] and appear as new structures that do not
exist in any of the original layers. The periodic layer could
be an image, a nylon curtain, an optical filter, etc. Assume
l1 and l2 are two periodical layers and s is the generated
superposition pattern, where:

s(x,y) = l1(x,y)× l2(x,y) (1)

The multiplication of two periodic functions results in nonlin-
earity in the frequency domain. As illustrated in Fig. 2, l1 and
l2 are two cosine functions with the frequency of f1 and f2
respectively. Then, the generated structure s can be calculated
as follows:

s = l1× l2
= (a1 +b1cos(2π f1t))× (a2 +b2cos(2π f2t))

= a1a2 +a1b2cos(2π f2t)+a2b1cos(2π f1t)

+b1b2cos(2π( f1 + f2)t)+b1b2cos(2π( f1− f2)t)

(2)

which contains two new components ( f1+ f2) and ( f1− f2) in
the frequency domain. Since human eyes are more sensitive to
low frequency signals, the new component ( f1− f2) becomes
noticeable as Moiré patterns if it is lower than the cutoff
frequency of human visual system (HVS) [51] and meanwhile
has a significant amplitude.

2.3 Moiré Pattern of Screen-camera Channel
Digital cameras often cause Moiré phenomenon when taking
pictures of digital screens, e.g., TV screens or liquid-crystal
displays (LCDs). The nonlinearity arises from the interfer-
ence of digital screens and the Color Filter Array (CFA) on
the camera image sensors, which we call the screen-camera
channel. The process is depicted in Fig. 3.

Screen Image. The unit structure of digital screens, e.g.,
LCD screens, usually consists of tri-color (red (R), green (G)
and blue (B)) filters and emits corresponding light separately,
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Figure 3: An illustration of the imaging process of the screen
(LCD)-camera (CFA) channel and the resulted screen photo
with Moiré patterns.

e.g., LCD panel shown on the left of Fig. 3. When taking
a picture towards an LCD screen, the unit structures of the
LCD panel are projected onto the camera sensors and form a
layer of spatial patterns, i.e., the image of the LCD screen. We
denote the image of the LCD screen on the camera sensors as
layer l1 with a frequency of f1, which interacts with the CFA
directly to generate Moiré patterns. To distinguish, we denote
the layer formed by the original LCD screen as layer l

′
1 with a

frequency of f
′
1. Note that other displays such as LED screens

are also applicable.
CFA. In the screen-camera channel, the light emitted by

the screen is received by the camera image sensors. A CFA
(i.e., a mosaic of tiny color filters) is placed over the camera
image sensor to capture the color information. Bayer filter is
the most common filter on smartphones’ built-in cameras [46],
which gives information about the intensity of light in RGB
wavelength regions in a 2× 2 array (e.g., CFA of camera
shown in the middle of Fig. 3). As a result, the CFA forms
another layer of spatial patterns, which we denote as layer l2
with a frequency of f2.

Nonlinear Optical Interaction. According to the Moiré
pattern profiling, the superposition of l1 (image of the screen)
and l2 (CFA of the camera) can generate new components in
the frequency domain. When the camera is positioned at a
proper distance and angle, the generated component ( f1− f2)
falls in the observable frequency range and appears as ripple
patterns on the captured screen photo, i.e., the Moiré patterns
caused by the screen-camera channel (shown in Fig. 3).

Inspired by the natural Moiré phenomenon existing in the
screen-camera channel, we propose to exploit the nonlinear
optical interaction between the CFA of the camera and the
well-designed camouflaging periodical patterns displayed on
the screen, to embed Moiré-pattern-based ID, i.e., mID, into
the screen photo, to trace the source of file leakages.

3 Threat Model

For the screen-photo-based leakage attacks, the adversary’s
goal is to leak confidential information via the photo taken
by smartphones. The photo can be delivered to unauthorized
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Figure 4: System overview of mID scheme.

parties from networking applications such as WhatsApp or a
portable disk. In this attack scenario, we assume the company
who wants to trace the screen photo, i.e., file forensics, has
full control over the confidential file. In other words, they can
modify the hardware and software such as screen configura-
tion. For the adversary, we have the following assumptions:

• Screen-capturing with Smartphones. To avoid being
logged and caught, the attacker tends to take a picture of
the screen displaying the confidential information with
her smartphones. The adversary wishes to capture the
confidential content completely and clearly, and there-
fore they should place their smartphones close enough
at a good angle.

• Untraceability over Internet. The adversary is able to
leak the screen photos anonymously via open networks,
e.g., public Wi-Fi. As a result, the path of the photo
leakage cannot be traced by the company.

• Photo Processing. To reduce the risk of being traced,
we assume the adversary may process the captured
screen photos. The possible processing operations in-
clude photo duplication, photo compression, image
up/downscaling, format conversion, image cut, etc.

4 Design

4.1 Design Requirement
To trace the source of file leakages via Moiré patterns, mID
shall satisfy the following requirements.

Subtle Visual Difference to User. The embedded mID
shall have no obvious visual impact to users for the sake
of user experience. In other words, users should not be able
to recognize what mID has modified to the display.

Vision Insensitivity to Adversary. The crafted Moiré pat-
terns appeared in the photos shall look similar to the ones
naturally generated by the screen-camera channel. Otherwise,
the adversary may notice the existence of mID and abandon
the image to avoid being traced.

4.2 Overview of mID
The basic idea is to generate mID by embedding identity num-
bers into the superimposed Moiré pattern via its intensity



levels, and the scheme consists of mID encoding and decoding
phases with four modules: (a) mID generation, (b) mID embed-
ding, (c) mID extraction, and (d) mID decoding, as shown in
Fig. 4.

In the encoding phase, the mID Generation module first
creates the modification that will be applied to the original
display based on the IDs, and the mID Embedding module
will find the best areas to apply such modification. The design
goal of the encoding phase is that the modification cannot be
observed visually by users but will be captured by cameras
and form a seemingly natural Moiré pattern, i.e., mID. The mID
Generation consists of (a) mID Framing that forms a proper
frame, (b) Grating Generation that helps to create Moiré
patterns, and (c) ID Encoding that adds the information of
IDs to the Moiré patterns. Note that designing grating is
similar to finding the carrier signals and the ID encoding is
similar to finding the modulation scheme in communication.

To generate Moiré patterns, the screen pixels are manipu-
lated to form a display grating, which has a periodic structure
and may appear as stripes. To make the patterns looks as if
they are naturally generated, the display grating is designed to
be vertical since the LCD panel has a vertical grating structure.
Second, to encode the mID into the display grating without
noticed by users, we propose a discretized bipolar non-return-
to-zero encoding method, which manipulates the intensity lev-
els of the generated Moiré patterns to represent information.
As humans perceive light and color in a non-linear manner,
we correct the luminance difference caused by the discretized
encoding to ensure user visual uniformity. Third, to embed
the generated gratings into the screen and maximize their
possibility of being captured in the photos, we automatically
analyze the current page of the screen and search for suitable
regions for embedding.

In the decoding phase, for a given screen photo that con-
tains embedded mID, the mID Extraction module tries to
remove the camera distortion with image rectification and
extracts the regions of Moiré patterns, i.e., Moiré areas, with
window scanning. Then, we recover the embedded identity
numbers via the mID Decoding module, in which we first
transform the Moiré areas into the HSV (hue, saturation,
value) color space, then perform saturation balance and en-
largement for image pre-processing, and finally recover mID
via k-means clustering with the assistance of check codes.

4.3 mID Generation
4.3.1 mID Framing
To label the information source via Moiré-pattern-based ID,
we design an N-bit mID that consists of (1) a 2-bit front check
code, (2) a payload, and (3) a 2-bit end check code. The
payload represents the identity of the information source and
appears as a sequence of binary digits (bits), each having
either the value “0” or “1”. We envision it can provide photo
forensics from three levels.

• Device level. When devices and users are tightly bound,

e.g., the devices can only be accessed by the owners,
the payload can be generated based on the hardware
information of the display device, e.g., the MAC (media
access control) address.

• Operating system (OS) level. When multiple users
share the same device but use their own OS accounts,
the payload can be generated at the OS level based on
the OS user account information.

• Application level. For sensitive applications, e.g., the
internal mail system or the database of companies, the
payload can be generated based on the account informa-
tion associated with the application.

The front (end) check code is a two-digit segment “01”
that appears before or after the payload of mID. As thus,
a 14-bit mID with front and end check codes appears as
01XXXXX...01. We design such a check code to facilitate
decoding with twofold benefits. First, the check code can help
restore the exposure-imbalanced images and can thus improve
the decoding accuracy. Second, it provides a baseline for the
k-means clustering to determine which cluster maps to bit “0”
or “1”, as we will reveal in detail in Sec. 4.6.

4.3.2 Display Grating Generation

As mentioned in Sec. 2, the screen pixels (layer l
′
1) is pro-

jected onto the camera sensors to form layer l1, and the CFA
of the camera forms layer l2, with their superposition gen-
erating mIDs. Among the three layers l

′
1, l1, l2, we can only

manipulate the screen pixels (l′1) for mID grating generation,
since the CFA layer (l2) is determined by the physical struc-
ture of smartphone built-in cameras and the projected screen
display (l1) is affected by the cameras as well. Recall that a
periodical grating layer can be modeled with a frequency and
a phase term:

l(x,y) = p(φ(x,y)) (3)

where l(x,y) represents the pixel value at the coordinate (x,y),
p(·) is a periodic function that determines the frequency of
the grating, and φ(x,y) is a phase function that determines
its geometric layout, as shown in Fig. 2. We explain how to
select appropriate periodic and phase functions for the layer
l
′
1 to generate mIDs.

Periodic Function Selection. Due to the long photograph-
ing distance and the pinhole effect of cameras, layer l1 has
an increased frequency compared with that of layer l

′
1. Ac-

cording to the Pinhole Camera Theory [35], the object size
projected onto a camera sensor is inversely proportional to
the distance between the object and the camera sensor:

Scam =
Sob j×L f

D
(4)

where Scam and Sob j are the photographed and actual sizes of
the object respectively, L f is the focal length of the camera,
and D is the distance between the camera and the object. Due
to that the photographing distance D is usually much larger
than the focal length L f , the size of layer l

′
1 shrinks to L f

D per



unit area, which gives f1 =
D
L f
· f
′
1. As a result, the frequency

of the generated Moiré patterns can be given as D
L f
· f
′
1− f2.

As the camera focal length L f and the CFA frequency f2 are
fixed by the photographing device, for a specific device, the
Moiré patterns are mainly determined by the photographing
distance and the frequency of the generated grating.

Considering the goal of adversaries is to capture the con-
tents on the screen completely and clearly, the photographing
distance D used by adversaries shall be within a range. For
a 24" LCD display commonly-seen on the market, the pho-
tographing distance D is usually larger than 60 cm for various
smartphones, as calculated in Appendix 11.1. To improve
the chances of the generated Moiré patterns to be captured
by cameras, the frequency of the periodic function p(·) shall
match the photographing distance, and should be as small
as possible since thinner strips are more likely to appear as
uniformly colored compared with wider stripes. Thus, we set
the frequency of p(·) to be 2 pixels, which is shown to be
effective in Sec. 6.

Phase Function Selection. While the periodic term affects
the density of the grating, the phase function determines its
geometric layout and thus the Moiré patterns. Due to that
in LCD panels, unit structures of the same color are usually
arranged in vertical, the natural grating formed by the LCD
display is vertical stripes of red, green, and blue respectively,
as shown in Fig. 3. To achieve vision insensitivity to the
adversary, we design mID that imitates the Moiré patterns
that are generated naturally by the screen-camera channel.
Specifically, with the selected frequency, we generate a binary
display grating for each bit of mID in the form of vertical
stripes, as given below:

l
′
1(x,y) = p1(φ1(x,y))

p1(u) = 0.5+0.5cos(πu)

φ1(x,y) = y mod 2

(5)

As the generated mID display grating has a frequency of 2
pixels while the digital screen structure has a frequency of 1
pixel, the mID-related and the natural Moiré patterns appear
at different distances and will not interfere with each other.

4.3.3 Intensity-based ID Encoding
Existing work [17, 30, 43, 45] usually hides information in
the Moiré patterns by manipulating the phase of one of the
gratings, e.g., two secret images show no obvious patterns
when observed separately, but reveal hidden information when
overlapped. However, manipulating the phase is likely to bend
the vertical stripes, and thus may result in visible changes to
adversaries. In addition, phase-based methods usually induce
significant patterns in the generated Moiré fringes, which is
likely to alert the adversaries and is unacceptable.

Intensity of Moiré Pattern. To address it, we modify the
intensity of Moiré patterns. Specifically, mID-related Moiré
patterns are new frequency components generated by the su-

1 0 1 0 1 0 0 0 0 1
(a) Unipolar NRZ coding for
binary sequence “101010001”.

1 0
(b) Discretized bipolar NRZ coding for bi-
nary sequence “10”.

Figure 5: The improved discretized bipolar NRZ coding en-
sures a flat edge between bits “0” and “1”.

perposition of the display grating and the camera CFA. Since
the latter is determined by the camera, the intensity of the
mID-related Moiré patterns depends on the intensity of the
display grating. Thus, the intensity of the generated Moiré
patterns can be changed by manipulating the pixel values of
two adjacent grating stripes in the RGB color space, i.e., the
contrast of two adjacent stripes. Such an observation is also
validated by our experiments. As the generated grating has
a spatial frequency of 2, we can denote the even column in
the generated grating as c0 = (r0,g0,b0), and the odd one
as c1 = (r1,g1,b1). With Equ. 6, c0 = (255,255,255) and
c1 = (0,0,0) generate the most intensive Moiré patterns. De-
note the color distance between two adjacent stripes, or in
other words, a pair of color vectors {c0,c1}, as their l2-norm
in the RGB space:

Cd = ||{c0,c1}||2 =
√

(r0− r1)2 +(g0−g1)2 +(b0−b1)2 (6)

A larger Cd represents a larger contrast between two adjacent
stripes and thus represents a more significant stripe grating,
which results in more intensive Moiré patterns. When Cd
decreases to zero, i.e., the even and odd columns are identical,
the generated grating loses its periodicity and thus no Moiré
patterns will be observed.

Based on it, we propose to embed identity numbers into the
generated Moiré pattern via its intensity levels. Intuitively, we
can utilize the high intensity level to represent bit “1”, and the
low intensity level to represent bit “0”, which is also known
as the unipolar non-return-to-zero (NRZ) code [31], as shown
in Fig, 5(a). However, such an implementation introduces
discontinuity at the junction of bit “0” and bit “1”, and thus
may aggravate suspicious patterns to adversaries if they are
adjacently encoded.

Discretized Bipolar Non-return-to-zero Encoding. To
alleviate the problem of discontinuity, we discretize both the
high and low levels to make the possible junction smooth,
which we call the discretized bipolar NRZ encoding. As
shown in Fig. 5(b), we discretize the high (low) intensity
level into k sub-levels with each sub-level consisting of n grat-
ing columns to approximate a cosine function, for the sake
of being flat at the edge of a bit. Another benefit of such an
implementation is that bipolar encoding increases Cd between
bit “0” and bit “1” compared with the unipolar one, which
may ease the difficulty of decoding.

Nonlinearity of Color Perception. In the discretized bipo-
lar NRZ encoding, each intensity level is represented with



(a) Color vector pairs with identical distance.

(b) Color vector pairs with the same c0+c1
2 but increasing distances.

(c) Color vector pairs with luminance correction and increasing distances.
Figure 6: An illustration of ten intensity levels for encoding
using three methods, and the ones created by the proposed
luminance correction scheme (c) show almost no visual differ-
ence and can embed mID without being noticed by adversaries.

one pair of color vectors {c0,c1} in the RGB space. Since bit
“0” and bit “1” share the same baseline, the encoding requires
(2k−1) intensity levels in total, i.e., (2k−1) pairs of color
vectors with increased color distances.

We employ the visual average effect of human visual sys-
tem (HVS) [51] to generate the required color vectors, which
suggests that human eyes take the average of contiguous ob-
jects as their perception and many image scaling methods are
built upon it [18]. As a result, we attempt to generate various
color vectors for different intensity levels while keep their
average RGB vector c0+c1

2 identical, which we assume may
have the potential to ensure the evenness of the generated
grating image.

Take the mid-gray (128,128,128) as the background color
for an instance, we can generate k pairs of vectors with in-
creased color distances such as:

Leveli : {c0,c1}i = {(128+5i,128+5i,128+5i),

(128−5i,128−5i,128−5i)}, i ∈ {1,2, ...,k}
(7)

Compared with the naive color vector pairs with an identi-
cal distance shown in Fig.6(a), the proposed ones, i.e., color
vectors with the same c0+c1

2 but increasing distances, exhibit
much fewer visual differences as shown in Fig. 6(b). Yet, it is
insufficient to generate an even grating image. After careful
analysis, we find it is because that adjusting the distance of
{c0,c1} changes its luminance perceived by human eyes, as
a result of the Gamma Correction [25] adopted by modern
display devices.

As humans perceive light and color non-linearly, with
greater sensitivity to relative differences between darker tones
than between lighter ones, gamma encoding is applied in im-
ages to optimize the usage of bits when encoding an image, or
bandwidth used to transmit an image [32]. Correspondingly,
modern display devices conduct gamma correction to reveal
the true colors. Both gamma encoding and gamma correction

follow a pow-law expression [47]:

Vout = AV γ

in (8)

where the input value Vin is multiplied by the constant A and
powered by the gamma value γ to get the output value Vout ,
with γ < 1 for encoding and γ > 1 for correction (decoding).
As a result, the generated RGB vector is expanded before
display and the luminance perceived by human eyes is not the
arithmetic mean c0+c1

2 as supposed.
Luminance Correction. To further make the encoding

unnoticeable, we propose a luminance correction algorithm
based on gamma correction and the non-uniformity color
perception of HVS. Specifically, we model the average lu-
minance Y of an RGB vector pair {c0,c1} by removing the
gamma compression, which transforms the image to a linear
RGB color space as follows:

Y{c0,c1}= wr(r
γ

0 + rγ

1)+wg(g
γ

0 +gγ

1)+wb(b
γ

0 +bγ

1) (9)

where γ = 2.2 for most modern display devices [47]. wr, wg
and wb are the weights of the RGB channels respectively,
which represent the intensity (luminance) perception of typ-
ical humans to lights of primary colors. Given that human
vision is most sensitive to green and least sensitive to blue,
wg has the largest value of 0.7152 and wb has the smallest
value of 0.0722, with wr = 0.2126 [48].

With luminance correction, we can generate RGB vector
pairs with even luminance by optimizing the following equa-
tions:

E = |Y{c0,c1}−Ybg|
Ybg = wrr

γ

bg +wggγ

bg +wbbγ

bg

mmmaaaxxx Cd = ||{c0,c1}||2
s.t. E < ε

s.t. ri,gi,bi ∈ Z∩ [0,255] , i = 0,1

(10)

We utilize the global search algorithm to solve the above opti-
mization problem. However, as we can see, the solution to the
formula is not unique and the number of searched vector pairs
is determined by the error threshold ε. A larger ε contributes
to more RGB vector pairs at the cost of less evenness of the
generated grating image. Thus, ε can be determined upon
the requirement of k, or in other words, the number of RGB
vector pairs needed to implement the discretized bipolar NRZ
encoding. After luminance correction, the generated grating
is almost invisible even with increasing color distances, as
shown in Fig. 6(c).

In summary, we utilize the discretized bipolar NRZ en-
coding to embed identity numbers into the generated Moiré
pattern via its intensity, and employ luminance correction to
ensure the evenness of the generated gratings.

4.4 mID Embedding
To embed the generated gratings and maximize their possibil-
ity of being captured in photos, we automatically analyze the



current page of the screen.
Region of Interest. Given the company’s goal is to prevent

cyber-theft of trade secrets, some regions of the current page
that contain confidential information such as texts or images,
are of more interests to the company, i.e., regions of interest
(ROIs). To search for suitable regions for mID embedding, we
first locate the possible ROI of the current page with computer
vision (CV) techniques [14, 24, 54], which mainly extract the
locations of texts and images, as shown in Fig. 7. The number
of ROI extracted is determined by the screen content, and we
calculate the centroid of these regions as the center of ROI for
the current page. Alternatively, the defenders can manually
mark the ROIs according to their demands.

Region of Embedding. To maximize the possibility that
mID is captured in the screen photos, we embed the generated
gratings in the vicinity of the ROI center, i.e., regions of
embedding (ROEs). In general, we assume that flat regions
close to the ROI center are more suitable for embedding since
(1) mID is more likely to be captured in the screen photos,
and (2) fewer details of the current page will be lost and
less vision disparity will be caused to users. In addition, we
design to embed one bit of mID in each ROE. It is because that
embedding the whole mID in one ROE may require a large flat
region. Separating the mID into several ROEs helps to reduce
the size requirement of ROEs.

Therefore, we search for N rectangular regions close to
the ROI center, where N is the number of bits of mID. Each
embedding region has a size of p×q, where p and q represent
the height and width of a 1-bit grating, respectively. The width
q can be further calculated as q = 2k×n. The height p can
be any value theoretically but a minimum one is required to
ensure the distinguishability of Moiré patterns in the screen
photos. In practice, we suggest that p > 50. Note that the
embedding region can be any shape. We employ rectangle
here for the ease of encoding and decoding.

We utilize a sliding window with a size of p×q and a step
of wm to scan through the current page for ROE searching.
For each image window B(x,y) with (x,y) as the centroid
coordinate, we evaluate its fitness F(x,y) in consideration of
both evenness and location:

D(x,y) =
1

∑
ch={r,g,b}

σ(ch[x− p
2 : x+ p

2 ,y−
q
2 : y+ q

2 ])

L(x,y) =
1

abs( x
hB
−Cx)+abs( y

wB
−Cy)

F(x,y) = wD ·D(x,y)+wL ·L(x,y)

(11)

where σ(ch) refers to the standard deviation of channel
ch = {r,g,b} of the current page. hB and wB are the height
and width of the current page, (Cx,Cy) is the centroid coordi-
nate of ROI, and wD and wL are the weights of the deviation
D(x,y) and location L(x,y) functions, respectively. In our
implementation, we set wD = wL = 0.5.

We employ the first N image windows in the descending

5

1

3

.2

4 6

Centroid of ROI

Figure 7: Illustration of ROI (red box) and ROE (black box)
of the current page [26]. The red dot is the center of ROI.

order of fitness ranking as our ROE, and rearrange them ac-
cording to the horizontal coordinates (in an ascending order)*.
As thus, we obtain N image windows in the horizontal direc-
tion. With the obtained regions, we embed the corresponding
mID bits by replacing the pixels of the original page with that
of the generated gratings. As thus, we embed the generated
mID gratings into the current page of the screen, under the
premise of non-obvious visual impact to users.

4.5 mID Extraction
The image captured by smartphones contains Moiré patterns
as well as other elements. To obtain the embedded mID, we
first locate the regions of Moiré patterns in the smartphone-
captured image, which we call the Moiré areas.

Image Rectification. Smartphone-captured images usually
suffer from geometric distortion due to the unparalleled cam-
era and screen planes, i.e., an angle exists between them. As
a result, the captured screen is no longer a regular rectangle
but a distorted quadrilateral. To address it, we first rectify
the distorted image with the commonly-used projection trans-
formation under the homogeneous coordinates [8, 53], and
then extract the rectified rectangle that contains the screen for
further Moiré area extraction.

Moiré Area Extraction. One intuitive method to extract
the Moiré areas is to search for the red-green fringes. How-
ever, as Moiré patterns may appear as various colors on dif-
ferent backgrounds and blur due to the noise introduced by
the screen-camera channel, simply searching for fringes of a
specific color may not suffice. Therefore, we turn to the trans-
verse coding style we employ for mID encoding, because of
which the Moiré area is likely to have larger color variations
in the horizontal direction compared to the vertical one.

To extract the Moiré areas with robustness, we use a 2-
dimension (2D) window Wm with a size of hm×wm and a step
of tm to scan through the rectified rectangle image. Specifi-
cally, we calculate the average color variation Varh and Varv
in both the horizontal and vertical directions, and determine
whether the current window belongs to the Moiré area with
the following in-equation:

Varv > r ·Varh (12)

*Arrange by vertical coordinates If equal horizontal coordinates.
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(a) Saturation of exposure-unbalanced JMA.
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(b) Saturation of exposure-balanced JMA.
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(c) Saturation of difference-enlarged JMA.
Figure 8: After pre-processing, the saturation of JMA is balanced and the difference between bits “0” and “1” is enlarged.
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Figure 9: The JMA saturation distribution
is roughly a Gaussian distribution.
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(a) Saturation curve of the pre-processed Moiré area.
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(b) Bit sequence recovered by bit clustering.
Figure 10: An illustration of mID recovered by k-means clustering with check codes.

where r is the ratio threshold and the window with signifi-
cantly larger horizontal variation will be regarded as a part
of the Moiré area. To achieve high extraction precision, the
window size and step are usually supposed to be in fine gran-
ularity. In practice, we set hm = wm = sm = 10 pixels, and
r = 1.5. After scanning, we obtain a number of Moiré win-
dows in several clusters with possibly a few outliers. The
number of clusters, i.e., the number of Moiré areas contained
in the photo, is usually less than or equal to the number of mID
bits N since two adjacent embedding regions appear as one
Moiré area in the photos. To locate the Moiré areas, we first
cluster those Moiré windows with mean shift clustering [6],
which obtains the center of each Moiré area roughly. Then,
we utilize Random Sample Consensus (RANSAC) [11] to
discriminate outliers and search for the minimum rectangle
that contains the rest of clustered Moiré windows for each
Moiré area. We gradually iterate their boundaries until conver-
gent, with which we extract the Moiré areas for further mID
decoding.

4.6 mID Decoding
After extracting the Moiré areas, we perform mID decoding
to recover the embedded mID. To ease burden of decoding,
we arrange and connect the obtained Moiré areas together
according to their horizontal coordinates. In this way, we
obtain a joint Moiré area (JMA) for decoding.

4.6.1 Image Pre-processing
The first set of decoding procedures is image pre-processing
that includes (1) Color Space Transformation that makes the
decoding algorithm robust across different colors, (2) Satu-
ration Balance that reduces the impact of focus position and
the ambient light, and (3) Saturation Difference Enlargement
that enlarges the saturation difference between bit “0” and bit
“1” to help decoding.

Color Space Transformation. The colors of the mID-
related Moiré patterns depend on the screen backgrounds.
For instance, a white background will produce Moiré patterns
with red and green stripes. To make the decoding algorithm ro-

bust across different RGB colors, we transform the joint Moiré
area into the HSV (hue, saturation, value) color space [49].
Specifically, as we utilize the Moiré pattern intensity to en-
code bits and high intensity results in high color saturation,
we perform mID decoding in the saturation dimension.

Saturation Balance. When taking a picture towards a
screen, people tend to focus on the center of the screen to
capture the whole screen. As a result, the Moiré areas close to
the focus may be better exposed compared to the remote ones,
as shown in Fig. 8(a). To reduce the impact of focus position
as well as the ambient light, we balance the saturation of the
joint Moiré area with the help of check codes.

Specifically, we focus on the horizontal saturation balance
since we encode mID in a transverse way and thus horizontal
saturation unbalance has a larger impact on decoding com-
pared to that in the vertical direction. To address it, we divide
the joint Moiré area into N splits by width, where the 1st and
2nd splits correspond to the bit “0” and bit “1” of the front
check code, and the (N− 1)th and Nth splits correspond to
that of the end check code. We compare the average satura-
tion of the 2nd and Nth splits and enhance the side with lower
saturation. The image enhancement algorithm we employ ma-
nipulates every pixel of the image and balances the saturation
in a horizontal and linear way, as shown in Algorithm 1 in
Appendix 11.2. For exposure-imbalanced images, saturation
balance is able to restore the actual Moiré patterns as shown
in Fig. 8(b), and thus can improve the decoding accuracy.

Saturation Difference Enlargement. After saturation bal-
ance, we enlarge the saturation difference between bit “0” and
bit “1” to improve the decoding efficiency. In general, the
Moiré area of bit “1” is likely to have more pixels with large
saturation values compared with that of bit “0”. However,
the noise (e.g., the Gaussian and salt-and-pepper noise [4],
which are common in photos) introduced during the process
of photographing may blur the image and thus increase the
difficulty of decoding. To ease the burden, we perform satu-
ration difference enlargement. Specifically, we assume that
the saturation values of pixels in the joint Moiré area are in
concordance with the Gaussian distribution based on the Cen-



tral Limit Theorem (CLT) [10], i.e., S∼N (µ,σ2), as shown
in Fig. 9. Based on it, we enhance the discrepancy between
bit “0” and bit “1” as follows:

s(x,y) =
{

0 s(x,y)< µ+α ·σ
s(x,y) s(x,y)≥ µ+α ·σ (13)

where α is the amplification factor. An appropriate α is able
to reduce the saturation intensity of bit “0” while maintain
that of bit “1”, and thus can help enlarge their differences, as
shown in Fig. 8(c). In practice, we set α to be 1.6.

4.6.2 ID Recovery
After image pre-processing, we recover IDs via k-means clus-
tering with the assistance of check codes.

Saturation Curving. With the enhanced joint Moiré area,
we first calculate the histogram of each column and obtain a
1×W saturation matrix, where W is the length of the joint
Moiré area. It is based on the transverse encoding we employ,
which means that pixels of the same column are supposed to
be identical. We then perform normalization on the matrix
and utilize a Hanning window to reduce the noise introduced
during photographing and improve the SNR (signal-to-noise
ratio). As thus, we obtain a horizontal saturation curve for
further decoding, as shown in Fig. 10(a).

Bit Clustering. For an N-bit mID, we further divide its sat-
uration curve into N splits and calculate the saturation sum
of each split as the value of the corresponding bit, denoted
as {P0,P1, ...,PN−1}. Since the processed saturation sequence
may have outliers (abnormally large values in our case) that
are likely to affect the clustering threshold, we reduce their
impacts by suppressing data points with large values. Specifi-
cally, for an N-bit mID, we decrease the largest K data points
as follows:

P
′
=

P
σ′β

(14)

where σ′ is the standard deviation of the saturation sequence
{P0,P1, ...,PN−1}, and β is the decreasing factor. A larger β

suppresses outliers more heavily. In practice, we set β = 0.1.
After that, we employ k-means clustering [50] to group

the same bit into the same class and utilize the check codes
to identify each class, i.e., bit “0” or bit “1”, as shown in
Fig. 10(b). In this way, we recover mIDs from screen photos
and the whole decoding process is shown in Algorithm 2 in
Appendix 11.2.

5 Implementation

We implement mID scheme at both the OS and application
levels in Windows, where mID runs as a background applica-
tion or a script after a user logs in, receptively. For the OS
level, mID employs the entire screen as the display window
and creates a rendering context using the Windows API func-
tions GetDC() and wglCreateContext. For the application
level, mID employs the application window as the display win-

dow and uses its own rendering context. Then, mID captures
the current page of the screen or application in real-time us-
ing the function glReadPixels() under the OpenGL (Open
Graphics Library) framework [19]. After that, it searches for
the ROI and ROE with the methods proposed in the mID
Embedding module. With the obtained ROE, mID replaces
the pixels of ROE with the gratings generated by the mID
Generation module, passes the new mID-embedded screen
(application) frame to the function glBufferData(), and
finally renders it on the display.

6 Evaluation

In this section, we evaluate the performance of the mID
scheme. We conduct experiments under various settings and
collect over 5000 photos with 5 display devices and 6 smart-
phones over 3 months. In particular, we evaluate the impact of
(1) IDs, (2) display devices, (3) capturing devices, (4) ambient
lights, (5) shooting distances, and (6) shooting angles with
the metrics of bit error rate (BER) and identity number error
rate (NER). In addition, we evaluate the performance of mID
against several photo processing attacks. The performance of
the mID scheme is summarized below:

• mID achieves an average BER of 0.6% and an average
NER of 4.0%, which demonstrates promises towards
screen photo forensics.

• mID performs well with little influence from the type of
display devices, cameras, IDs, and ambient lights.

• mID performs well at a shooting distance of
(60cm,80cm) and a shooting angle of (−20◦,20◦),
which are within the possible attack distances and angles
adopted by adversaries as suggested by the theoretical
calculation (in Appendix 11.1).

6.1 Experiment Setup
We evaluate mID scheme in a laboratory setting with various
display and capturing devices. The detailed settings are as
follows.

Display Device. We use a BenQ EW Series LCD screen
as the default display device. To evaluate the impact of dis-
play devices, we use 2 other LCD displays and 2 laptops of
different brands and models. Throughout the experiments, the
display devices remain in the default settings with normal
color mode and 50% screen brightness. The detailed informa-
tion of each display device is shown in Tab. 1.

Capturing Device. We use an LG Nexus 5X smartphone
as the default capturing device. In addition, we use 5 other
smartphones of various brands and models to evaluate the
impact of capturing devices. Throughout the experiments, the
capturing device is clamped on a tripod with a height of 30 cm
from the desk and alighted with the center point of the display
screen, as shown in Fig. 11. The shooting distance and angle
are set to 70 cm and 0◦ respectively. We use the main camera
of each device in the default settings, with Auto-focusing



Table 1: Summary of display devices.
No. Manuf. Model Display Size Aspect Ratio Viewing Area Native Resolution Panel Type Backlight
1 BenQ EW2440ZC 24" 16:9 53.1 cm × 29.9 cm 1920×1080 MVA LED
2 HP 24w 23.8" 16:9 52.7 cm × 29.6 cm 1920×1080 IPS LED
3 AOC LV243XIP 23.8" 16:9 52.7 cm × 29.6 cm 1920×1080 IPS LED
4 Lenovo IdeaPad Y700 15.6" 16:9 34.5 cm × 19.4 cm 1920×1080 IPS LED
5 ASUS FX50J 15.6" 16:9 34.5 cm × 19.4 cm 1920×1080 IPS LED
MVA: Multi-domain Vertical Alignment. IPS: In-Plane Switching

Table 2: Summary of main camera specifications of the capturing devices.
No. Manuf. Model Camera Resolution Aperture Focal Length† Pixel Size Image Size AF‡ HDR§
1 LG Nexus 5X Single 12.3 MP f/2.0 5 mm, 26 mm (wide) 1.55 µm 4032×3024

√ √

2 HUAWEI Mate 10 Dual
12 MP

20 MP B/W
f/1.6
f/1.6

4 mm, 27 mm (wide)
4 mm, 27 mm (wide)

1.25 µm
1.25 µm

3968×2976
√ √

3 HUAWEI P9 Dual
12 MP

12 MP B/W
f/2.2
f/2.2

4.5 mm, 27 mm (wide)
4.5 mm, 27 mm (wide)

1.25 µm
1.25 µm

3968×2976
√ √

4 Apple iPhone X Dual
12 MP
12 MP

f/1.8
f/2.4

4 mm, 28 mm (wide)
6 mm, 52 mm (telephoto)

1.22 µm
1.0 µm

4032×3024
√ √

5 Motorola G4 Plus Single 16 MP f/2.0 5 mm, 27 mm (wide) - 4608×2592
√ √

6 Vivo Xplay3S Single 13 MP f/1.8 4 mm, 28 mm (wide) - 4128×3096
√ √

† Physical (former) and equivalent (latter) focal lengths for smartphone’s built-in cameras. ‡ AF: Auto-focusing
§ HDR: High Dynamic Range Imaging

(AF) and High Dynamic Range Imaging (HDR) activated.
No other image processing techniques, e.g., filters, are used
during the experiments since (1) not all smartphones provide
these techniques, and (2) they are not activated by default.
The detailed parameters of the cameras are shown in Tab. 2.
Note that at the time of writing, we find no Moiré pattern filter
functions available on smartphones on the current market.

Ambient Light. We conduct most experiments under the
artificial lights produced by LEDs (∼ 200 lm), as it is the most
likely attack environment in practice. In addition, we conduct
experiments under the case of (1) natural lights (∼ 20 lm),
and (2) no additional lights except for those from the display
screen (< 5 lm), to evaluate the impact of ambient lights.

Application Scenario. Without loss of generality, we study
the PDF document as an illustration of confidential files and
use Adobe Reader as the default document browser under
the standard reading mode in this paper. The PDF document
used in the experiments contains texts only. In addition, we
conduct experiments with (1) Microsoft Word, (2) JetBrains
PyCharm 2017, and (3) Google Gmail Web Client with 4
various background colors. Due to the space limitations and
the similar performance across these applications, we demon-
strate the results of Adobe Reader only. Note that mID scheme
is applicable to both text-only and image-contained files. For
instance, the Google Gmail Web Client has several images
and logos in the background, and the mID scheme is able to
cooperate with it as well.

Encoding Parameter. We choose 14-bit mID as an illus-
tration in this paper, i.e., N = 14. As such, each generated
mID is consisted of a 2-bit front check code, a 10-bit infor-
mation code, and a 2-bit end check code, i.e., in a form of
01XXXXX...01. For the discretized bipolar NRZ encoding,
we employ 4 sub-levels with each sub-level consisting of 4
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Figure 11: The current page of the display is embedded with
mID, which can be captured by the built-in cameras of smart-
phones.

grating columns, i.e., k = 4 and n = 4. Note that all the afore-
mentioned parameters are not mandatory and can be adjusted
based on user requirements.

6.2 Performance Metrics
We use BER (bit error rate) and NER (identity number error
rate) to evaluate mID from two different perspectives.

BER. BER refers to the number of bit errors divided by the
total number of mID bits (excluding check codes), which eval-
uates the performance of mID decoding in a fine granularity.

NER. NER refers to the number of the IDs that were not
correctly decoded (IDs with at least one bit error) divided by
the total number of mIDs. Thus, NER is a stricter criterion
compared with BER and demonstrates the effectiveness of
the proposed mID method.

6.3 Overall Performance
In this section, we first evaluate the overall performance of
mID decoding with various IDs, and then evaluate the im-
pact of the aforementioned factors including display devices,
capturing devices, ambient light, etc.
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Figure 12: Performance of mID decoding under various settings.

6.3.1 Impact of IDs
In the first set of experiments, we evaluate the overall per-
formance of mID with various IDs. We randomly generate
10 mIDs, embed them into the PDF files with mID generation
and mID embedding, and then display the modified files on
the default LCD monitor, respectively. We then capture 30
photos with the Nexus 5X smartphone for each mID. During
the photographing, we use the default camera settings.

We perform mID extraction and mID decoding on the cap-
tured photos for each mID. The results in Fig. 12(a) reveal
that mID scheme achieves an average BER and NER of 0.6%
and 4.0%, respectively. Specifically, ID 3 achieves the best
performance of 0 BER and NER while ID 10 achieves the
worst with a BER of 1.3% and an NER of 10.0%. Although
the NER of each ID varies due to the limited samples as
well as the randomness introduced during photographing, the
BER remains relatively low and stable, demonstrating the
effectiveness of the mID decoding algorithm.

6.3.2 Impact of Display Devices
In real-world deployment, display devices may have various
types and models. However, as mID does not use any explicit
device attribute during design, mID should be compatible with
any display devices. To investigate it, we utilize two other
LCD monitors and two laptops with different screen sizes and
panel types to display the modified files. The details of each
display device are summarized in Tab. 1. With the default
settings, we utilize the default capturing device and collect 40
photos for each display device.

The decoding results in Fig. 12(b) reveal that laptop screens
show relatively higher NER and BER compared with LCD
monitors. ASUS shows the worst performance with a BER
of 1.0% and an NER of 10.0% while AOC shows the best
with a BER of 0.3% and an NER of 2.5%. We believe it is
because laptops have smaller screen sizes compared with LCD
monitors. As a result, the Moiré area occupies less area in the
photos displayed on laptops, and thus is more likely to suffer
from noise and more difficult to distinguish. Nevertheless,

mID can still achieve an average BNR of 0.6% and an average
NER of 5.5% among various display devices.

6.3.3 Impact of Capturing Devices
In practice, adversaries may use any smartphone to take pic-
tures. To investigate whether mID works well under various
smartphones, we conduct experiments with 5 other smart-
phones from different brands and models, in addition to the
default capturing device Nexus 5X. The details of each cap-
turing device are summarized in Tab. 2. We utilize the main
camera (single or dual) of each smartphone to collect 50 pho-
tos respectively, with the auto-focusing setting.

From the results shown in Fig. 12(c), we can observe that
single-camera smartphones achieve better performance com-
pared with dual-camera ones. For instance, Nexus 5X and
Motorola G4 Plus perform best in the experiments with a
BER of 0.2% and an NER of 2.0%, which are both single-
camera phones. By contrast, dual-camera devices suffer from
relatively higher NERs, e.g., HUAWEI P9 performs the worst
with a BER of 1.0% and an NER of 8.0%. We believe it is
because that dual-camera devices utilize images from both
cameras to composite the final photo, which may have impact
on the Moiré patterns and thus the decoding results. Overall,
mID can achieve an average BER of 0.7% and an average
NER of 5.4% with capturing devices various in resolution,
aperture, and focal length.

6.3.4 Impact of Ambient Lights
During photographing, the ambient lights are likely to affect
imaging and mID decoding. To investigate the impact of am-
bient lights, in addition to the artificial lights produced by
LEDs (∼ 200 lm), we conduct experiments under two other
light conditions, i.e., (1) natural lights (∼ 20 lm), and (2) no
additional light except for the one from the display screen
(i.e., dark environment (< 5 lm)). For each light condition,
we collect 50 photos and perform mID decoding.

The results in Fig. 12(d) demonstrate that the dark envi-
ronment helps to improve the decoding performance while



artificial lights have negative effects. Specifically, the dark
environment achieves the best BER of 0.2% and NER of
2.0%, followed by the natural environment with a BER of
0.4% and an NER of 4.0%. The artificial environment per-
forms the worst with a BER of 0.8% and an NER of 6.0%.
We believe it is because that the LEDs in the experimental
room are multiple and decentralized. As a result, the light
source is heterogeneous during photographing, which may
cause the unevenness of exposure and thus decrease the decod-
ing accuracy. Nevertheless, mID can still achieve an average
BER of 0.5% and an average NER of 4.0% with various light
conditions.

6.3.5 Impact of Photograph Distances
Theoretically, adversaries may take a photo from any distance.
However, since the goal of the adversary is to record the
information on the screen, the picture is likely to be taken at
a reasonable distance and angle. To investigate the impact of
photograph distance, we first survey the common shooting
distance adopted by normal volunteers, which turns out to be
in the range of 50 cm - 100 cm for the sake of capturing the
screen well. We then conduct experiments during this range
with a step of 2 cm. For each distance, we collect 50 photos
and perform mID decoding.

From the results in Fig. 12(e), we can observe that mID
achieves the best performance with a shooting distance around
58− 80 cm. With a photograph distance either > 84 cm or
< 56 cm, mID decoding accuracy drops due to that the gen-
erated Moiré patterns become invisible to both human eyes
and camera sensors. Overall, mID decoding can achieve an
average BER of 0.4% and an average NER of 2.7% under the
distance range of (60 cm,80 cm). In addition, according to the
calculation shown in Appendix 11.1, to capture a 24" display
screen completely, the photograph distance D is usually larger
than 60 cm for various smartphones. Therefore, we believe
that mID is basically sufficient to cover the possible attack
distances adopted by adversaries.

6.3.6 Impact of Photograph Angles
In addition to the photograph distance, we investigate the
impact of shooting angles from three degrees-of-freedom, i.e.,
roll, pitch, and yaw, as shown in Fig. 11. The first degree-
of-freedom roll rotates the image captured by the camera
in the x-y plane, and we can reduce its impact by image
rotation. The second and third degrees-of-freedom pitch and
yaw mainly cause vertical and horizontal deformation in the
captured image respectively. In real attacks, the former may
have little impact since we employ the transverse encoding,
which means pixels of the same column are supposed to be
identical and thus vertical deformation may not affect the
information representation. Besides, both the vertical and
horizontal deformation can be addressed with rectification
techniques [8, 53]. Therefore, we mainly evaluate the impact
of the last degree-of-freedom, i.e., yaw, in this paper since it

is most relevant to mID scheme.
During the experiments, we take the symmetry axis of the

smartphone screen as the center axis and rotate the yaw an-
gle with a step of 2◦. We set the shooting distance to default
throughout the experiments and the smartphone is tangent to
the arc consisted by its motion locus. Without loss of general-
ity, we start from the central point where the smartphone is
paralleled with the display screen, i.e., 0◦, and increase the an-
gle of inclination in both clockwise (+) and anticlockwise (-)
directions. For each angle, we collect 50 photos and perform
mID decoding.

From the results shown in Fig. 12(f), we can observe that
mID achieves a relatively low BER and NER with a pho-
tograph angle less than 20◦. When the inclination angle is
further increased, the distortion of Moiré stripes becomes non-
negligible and difficult to be corrected, and thus may affect
the performance of mID extraction and decoding. However,
we argue that with an inclination angle larger than 20◦, the
image content is heavily distorted as well, which may also
deviate from the goal of the adversaries. Overall, mID is able
to achieve an average BER of 0.5% and an average NER of
3.6% with a photograph angle within (−20◦,20◦).

7 Preliminary User Study

We measure whether users will notice the presence of mID
and how users cope with mID-related Moiré patterns in the
screen photos by conducting a user study among 34 volun-
teers. Most of them are graduate students aged 20-30 years
old. We followed the local regulations to protect the rights
of human participants despite the absence of Institutional
Review Board (IRB).

To study whether users can recognize the presence of mID,
we conduct the following test: on an LCD monitor in an
office room, we display a PDF document using Abode Reader,
which is an IELTS essay about news and we embed mID in
both sides of the document body. The participants are required
to sit in front of the monitor and provided 5 minutes to read
the essay. After reading, we conduct a questionnaire survey
for each participant, in which we ask three choice questions
and three 7-point scale questions, and the detailed descriptions
of each question are summarized in Tab. 4 in Appendix 11.3.
For comparison, we conduct another contrast test using a PDF
document without mID. From Tab. 4, we can see that the first
3 choice questions are essay-content-related, which are the
superficial tasks of the test. The real aim is to learn whether the
participants feel or notice any visual abnormality during the
process of reading (Question 6) and we cover it up with two
transitional questions (Question 4 and 5). The results shown
in Fig. 13 demonstrate that the participants hardly perceive the
existence of mID in the course of normal use (with an average
of 1.147, a standard deviation of 0.429, a 95% confidence
interval of [1.003,1.291] on a 7-point scale) compared with
the mID-free situation (with an average of 1.118, a standard
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Figure 13: Scores of Question 6 when the screen is embedded
with/without mID.

deviation of 0.322, a 95% confidence interval of [1.009,1.226]
on a 7-point scale). Thus, mID should be able to satisfy the
requirement of no visual impact on users.

To study how well the decoding technique works for the
realistic photos taken by attackers, we conduct a real-world
experiment by asking each volunteer to take 5 photos towards
the mID-embedded screen after finishing the questionnaire sur-
vey, with the imagination of leaking important information to
competitors and the need of capturing the information on the
screen completely and clearly. The results illustrate that for
the 170 photos taken by the volunteers, an average decoding
accuracy of around 95% can be achieved. In addition, the re-
sults demonstrate that more than 91% (31/34) volunteers take
photos with Moiré patterns as they are used to them. The other
3 users carefully adjust the shooting angle and distance to
avoid Moiré patterns. However, the adjustment is not adopted
by most users since it may twist the photo content. It indicates
that the attackers are likely to include Moiré patterns in the
screen photos, although studying people’s willingness will
need to be further studied in the future.

8 Discussion and Limitations

In this section, we discuss several issues of mID as well as its
limitations.

In-camera Image Processing. Modern smartphones uti-
lize in-camera image processing techniques such as auto-
focusing, optical anti-vibration, HDR, and multi-camera sys-
tem to form a better picture. Among those, HDR combines
a sequence of photos to achieve a greater dynamic range of
luminosity, and we use it by default in our evaluation. To il-
lustrate the impact of HDR, we conduct a contrast experiment
with the HDR-deactivated Nexus 5 smartphone. The results
demonstrate that HDR can reduce the BER from 0.4% to
0.2% for the Nexus 5 smartphone. We assume it is because
that HDR can increase the luminosity difference between
the bit “0” and “1”, and is beneficial to mID decoding. The
multi-camera system combines photos from each individual
camera to achieve a better depth of field. In our evaluation,
we use 3 single-camera and 3 dual-camera smartphones, and
the results shown in Sec. 6.3.2 demonstrate that dual-camera
phones show a slightly higher NER but can still achieve a
good performance (∼ 93%).

Table 3: Impact of photo processing.
No. Photo Processing Technique Defense
1 Image Duplication (copy and paste)

√

2 Image Compression (lossless)
√

3 Image Upscaling
√

4 Image Downscaling Partial
5 Format Conversion (PNG to JPG)

√

6 Image Cut Partial

Post-camera Image Processing. We adopt the same de-
sign assumption as the ones of watermarking or stegano-
graphic techniques, i.e., adversaries are unaware of the tech-
nique, and we hide information by embedding IDs in Moiré
patterns that appear natural. Nevertheless, in a rare case, the
adversary may process the captured screen photos to reduce
the risk of being traced, as mentioned in Sec. 3. The possi-
ble post-camera processing techniques include two types: (1)
commonly-used image editing operations such as photo du-
plication, photo compression, image up/downscaling, format
conversion, and image cut, and (2) specially-designed evasion
algorithms targeted at removing Moiré stripes.

For the former, we randomly choose 10 photos from the
screen photos collected under the default settings and con-
duct experiments to investigate whether mID can resist these
attacks. From the results shown in Tab. 3, we can see that mID
can successfully resist the attacks of photo duplication (copy
and paste), compression (lossless), upscaling (any upscaling
ratio), and format conversion (PNG to JPG). The reason is
that those attacks do not or hardly cause information loss
of the screen photos (upscaling even increases the amount
of information contained in the photos), thus have no obvi-
ous impact on mID decoding. The rest of the attacks, on the
contrary, may affect the content of the photo and thus the
decoding. For image downscaling, we evaluate its impact
by setting the downscaling ratio to 0.9, 0.8, ..., 0.1, and the
information loses uniformly. The results show that mID can
achieve a good performance (>90%) with a downscaling ratio
larger than 0.6. With a smaller ratio, e.g., 0.5, many details
of the photos, including the Moiré patterns, are lost, resulting
a performance decrease. However, in this case, the content
in the photo is blurred as well, which may affect the reading.
For image cut, as we only embed mID in the vicinity of ROI,
removing other photo areas do not impact the decoding of
mID. If the adversary must remove the Moiré areas, which is
possible but may be difficult since they are usually surrounded
by ROI, we may not obtain enough information to recover
the embedded mID. Thus, in general, mID is able to resist the
attacks of photo duplication, photo compression, image up-
scaling, and format conversion, and partial attacks of image
downscaling and image cut.

For the latter, existing Moiré pattern evasion approaches
mainly have three categories: (1) adding an optical low-pass
filter (OLPE) over the camera lens, (2) using an enhanced
color interpolation algorithm, and (3) employing post image
processing techniques. The first two categories are both pre-



ventive measures and implemented within the cameras, thus
are not capable of removing existing Moiré stripes contained
in the screen photos. For the last category, however, automat-
ically removing Moiré patterns from a single photo is still
challenging at present even with the help of deep learning [52].
In most cases, it is still done manually with professional image
processing software. We admit that such evasion is possible
but at the cost of rendering the photo blurred and thus may
greatly increase the difficulty of reading. Thus, we believe
that in most cases, in the interest of leaking as much informa-
tion as possible, adversaries will not bother to remove Moiré
patterns.

Display Device. In the aforementioned evaluation, we eval-
uate the performance of mID with display devices of various
manufacturers, models, sizes and panel types. In addition to
these factors, the resolution and image rendering mode of
display devices may also have impacts on the performance
of mID. The dominated resolution of digital screens on the
current market is 2 K, and is likely to be increased to 4 K in
the future. For mID, resolution enhancement is favorable since
it can help smoothen the gratings as a result of decreased
distance between two adjacent stripes. For image rendering
mode, most users do not change the default settings (with a
standard gamma value γ = 2.2). If by any chance, the users
select other rendering modes, e.g., Low Blue Light, Cinema,
or Game modes that are available on some mainstream mon-
itors and laptops, the gamma value is likely to be different.
However, it will not affect mID because we can obtain the
current gamma value of the screen through relevant APIs, and
make corresponding adjustments in the luminance correction
process.

Capturing Device. Considering convenience and conceal-
ment, we assume that smartphones are the most likely cap-
turing devices. However, mID utilizes the interaction between
display devices and the CFA of digital cameras. In practice,
other digital photographic equipment, e.g., DSLR (Digital Sin-
gle Lens Reflex) cameras, can also capture the Moiré patterns
and thus can cooperate with mID. In addition, compared with
smartphones’ built-in cameras, they employ less image pro-
cessing algorithms during photo forming, and thus the Moiré
patterns captured are closer to the theoretical superposition
results, which may contribute to higher decoding accuracy.

Transmission over Instant-messaging Tools. The adver-
sary may exfiltrate the captured screen photo via instant-
messaging tools, e.g., WhatsApp, Skype, and QQ. Image trans-
mission via instant-messaging tools has two forms: (1) The
image is transmitted as a file, and (2) The image is transmitted
as a photo. The first form is usually (1) lossless (neither the
format or size is changed), or (2) format converted (e.g., PNG
to JPG). The second form is usually (3) downscaled (com-
pressed). To exfiltrate the confidential information clearly,
the adversary is more likely to share the screen photo as a
file. In this case, experimental results demonstrate that mID
shows no performance difference in decoding 30 screen pho-

tos before/after shared as files since mID is robust to format
conversion attacks. In a few cases, the adversary may choose
to share the screen photo directly as a photo. In this case,
the screen photo is downscaled and the EXIF (exchangeable
image file) information is lost. Since we encode mID in the hor-
izontal direction and do not rely on any EXIF information, the
horizontal downscaling ratio (in the form of pixel numbers) is
the main factor that may affect the decoding accuracy. Based
on our experiments, the horizontal downscaling ratio depends
on the photo contents and the used instant-messaging tools
(different tools may use different compression algorithms),
and usually ranges from 0.3 to 0.8. With the current encoding
parameters shown in Sec. 6.1, mID can still decode screen
photos with a horizontal downscaling ratio above 0.6 (i.e.,
a pixel loss of up to 64%) after shared. For screen photos
with smaller horizontal downscaling ratios, the decoding ac-
curacy drops, e.g., by 63.5% for a ratio of 0.5. This can be
addressed by adding more redundant pixels, i.e., increasing
the value of k, for encoding. Experimental results show that
with a larger k = 8, the decoding scheme can cope with a
horizontal downscaling ratio as low as 0.3. Thus, we assume
mID has the potential to survive from the transmission over
instant-messaging tools.

Encoding Space. The encoding space of mID mainly de-
pends on the resolution of the display device and the com-
position of its current page. Specifically, a higher display
resolution or a simpler page composition lead to a larger en-
coding space. An N-bit mID takes q = 2k× n×N pixels in
width with the capability of identifying 2N−4 devices. With a
minimal grating height of p = 50, for a display device with
a resolution of 1920×1080 pixels, the encoding space limit
is 2[

1920
2k×n−4]×[ 1080

p ] = 21176 with our default implementation.
We acknowledge that the encoding space cannot reach the
limit in practice since only portions of the screen can be used
to embed mID. However, we believe that the encoding space
of mID is still relatively large and sufficient for screen photo
forensics, especially for highly-confidential scenarios.

Shooting Focus, Distance and Angle. mID works well
with photos focused on the center of the screen and taken
within a distance range of (60 cm,80 cm) and an angle range
of (−20◦,20◦). We choose these parameters to reflect the
goal of adversaries who wish to capture the contents on the
screen completely and clearly. Thus, we set the For the shoot-
ing focus, we set it on the center of the screen during the
experiments considering adversaries’ wishes to capture the
confidential content completely and clearly. It is okay if the
camera is not centrally focused as long as the mID-related
Moiré patterns are captured in the photos. For the shooting
distance and angle, we agree that beyond the aforementioned
ranges may render the generated Moiré patterns out of the
visible frequency range, leading to partial or even no Moiré
patterns in the captured screen photos. However, we argue
that the distances and angles that mID supports can cover most
of the possible shooting positions, given the goal of capturing



the contents on the screen completely and clearly.
Comparison with Other Invisible Digital Watermark

Techniques. Due to the noises introduced by the electronic
screen and the camera sensors, traditional invisible digital wa-
termarks may no longer be recognizable after photographed.
Thus, we propose to utilize Moiré patterns for photo foren-
sics since they are optical phenomena generated during the
process of photographing screens. We compare our methods
with 8 commonly-used invisible digital watermarks includ-
ing 3 popular commercial tools: (1) SignMyImage [42], (2)
Icemark [39], and (3) OpenStego [40], and 5 open source tech-
niques from GitHub [21]: (1) Wavelet Transform, (2) Discrete
Wavelet Transform, (3) Discrete Cosine Transform, (4) Least
Significant Bit, and (5) Discrete Wavelet Transform and Sin-
gular Value Decomposition. The results show that none of the
digital watermarks provided by the aforementioned methods
work in the screen-photo-based leakage attacks while mID
can successfully trace to the source of a screen photo with an
average accuracy of 96%. Thus, we believe mID is suitable
for screen photo forensics.

9 Related Work

In this section, we present studies relevant to ours. Specifi-
cally, we discuss the aspects related to image watermarking,
Moiré pattern, and optical cryptography.

Image watermarking to enable digital media protec-
tion. Digital media requires protection when transferring
through internet or other mediums. Image watermarking tech-
niques have been developed to fulfill this requirement [38].
Most existing image watermarking approaches are performed
in the spatial [1, 7, 29] or DWT (discrete wavelet trans-
form) [12, 20, 23] domains and use frame synchronization
methods to resist to geometric distortions. Beyond that,
Riad et al. [36, 37] proposed a robust watermarking method
based on Discrete Fourier Transform (DFT) for printed and
scanned identity images. Gourrame et al. [13] proposed a
Fourier based watermarking method to resist print-cam at-
tacks for real captured images and revealed that FFT domain
resists better to the perspective distortions compared to the
DWT domain. Thongkor and Amornraksa [41] proposed a
watermarking method for posters that is robust against distor-
tions due to printing and camera capturing processes. Differ-
ent from these methods, mID is an optical watermark based
on Moiré patterns and can be used for screen photo forensics.

Leveraging Moiré patterns to hide invisible messages.
Moiré patterns are explored in various studies to hide mes-
sages. Lebanon et al. [22] explored ways to superimpose
various patterns of gratings to create Moiré patterns of face
images. Hersch et al. [15] created moving Moiré components
running up and down at different speeds and orientations with
the help of a revealing layer. Desmedt et al. [9] created secret
sharing schemes based on Moiré patterns with shares being re-
alistically looking images. Tsai et al. [43] enabled the creation

of Moiré art and allowed visual decoding by superimposing
grating images printed on separate transparencies. Walger
and Hersch [45] proposed a method to embed information
corresponding to up to seven level-line Moirés within a single
base layer, and the information can be recovered later with a
revealer printed on a transparency or an array of cylindrical
lenses. These studies mainly use two semi-transparent lay-
ers and overlap one on the other to reveal hidden images or
information. By contrast, mID exploits the nonlinear optical
interaction of the screen-camera channel to embed identity
information.

Optical and visual cryptography to enable secure infor-
mation exchange. Existing techniques [3, 16, 34] of visual
cryptography (VC) usually encode a secret image into several
shares with camouflaged visual patterns, and stack a suffi-
cient number of shares to reveal the original secret image. For
instance, Huang and Wu [17] proposed an optical watermark-
ing method in which a hidden binary image can be decoded
by superposing a transparent key image onto a printed im-
age. These studies [5, 27] applied VC to Quick Response
(QR) codes to check the identity accessing to the QR codes
or control the permission to the protected data. Inspired by
the aforementioned work, mID utilizes the inherent attributes
of the screen-camera channel and proposes a Moiré-pattern-
based optical watermarking scheme to enable screen photo
forensics.

10 Conclusion

In this paper, we propose mID, a digital forensics mechanism
to identify the source of the file leakages via photos utilizing
Moiré patterns. We show that Moiré patterns are ideal for
photo forensics because they are optical phenomena naturally
generated during the process of photographing screens and
are observed regularly in photos of digital screens. Leverag-
ing it, we design an effective screen photo forensics scheme,
and evaluate it with 5 display devices and 6 smartphones of
various manufacturers and models. The evaluation results
demonstrate that mID can achieve an average BER of 0.6%
and an average NER of 4.0%. In addition, the performance
is barely affected by the type of display devices, cameras,
IDs, and ambient lights. We believe that mID is a promising
technique and can work complementarily to several existing
methods to cope with illegal information leakage. Future di-
rections that worth studying include exploring a wider attack
range and further improving the decoding accuracy.
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11 Appendix

11.1 Minimal Photograph Distance
Considering the goal of recording the confidential information
displayed on the screen with smartphones, we assume the
adversary is likely to capture the screen in complete and
hold the smartphone vertically to avoid the signs of secret
filming. In this case, the photograph distance D adopted by
the adversary shall be larger than a minimal value Dmin to
contain the entire screen in photos.

According to Equ. 4, the photograph distance D can be
calculated as D =

Sob j×L f
Scam

. For the minimal distance Dmin,
Sob j is the physical width of the display screen, L f is the
physical focal length of the camera, and Scam refers to the
image width of the camera. Scam can be further calculated as
Scam = Sp×Np, where Sp is the size of a single pixel and Np
is the number of pixels in width of the camera. As a result,
Dmin can be given as follows:

Dmin =
Sob j×L f

Scam
=

Sob j×L f

Sp×Np
(15)

With the device specifications in Tab. 1 and Tab. 2, we can
calculate the minimal photograph distance Dmin for various
screen-camera settings. For instance, for our default setting,
i.e., the BenQ EW2440ZC monitor for image display and
the LG Nexus 5X smartphone for image capture, Dmin =
Sob j×L f
Sp×Np

= 53.1cm×5mm
1.55µm×3024 = 56.6cm. For HUAWEI Mate 10,

HUAWEI P9, and Apple iPhone X, it will be 57.1cm, 64.2cm,
and 57.6cm, respectively. Therefore, to capture a 24" LCD
display that is most commonly seen on the market with smart-
phones, the photograph distance shall usually be larger than
60 cm.

11.2 mID Algorithms

Algorithm 1: Saturation Balance
Input:

• M = {H,S,V}: extracted joint Moiré area
• N: number of bits of mID.
• w: width of the joint Moiré area

Output: S′: saturation of the balanced joint Moiré area
1 sp2,spN ← SPLIT_MOIRÉ _AREA(M,N) sl ,sr ←

AVERAGE_SATURATION(sp2,spN)

2 pl = 0.5+0.5∗abs(min(0, sl−sr
sr

))

3 pr = 0.5+0.5∗abs(min(0, sr−sl
sl

))

4 for M(x,y) ∈M do
5 if y≤ w/2: then
6 a = 1

max(S(x,y),1−pl)

7 else
8 a = 1

max(S(x,y),1−pr)

9 S′(x,y) = a ·S(x,y)

Algorithm 2: mID Decoding
Input:

• M = {H,S,V}: extracted joint Moiré area
• N: number of bits of mID.

Output: B: decoded bit sequence
1 W ← WIDTH(M) // get the width of the joint Moiré area
2 S′ ← SATURATION_BALANCE(M,N ,W ) // get the saturation

of the balanced joint Moiré area
3 µ← AVERAGE(S′)
4 σ← STD(S′)
5 α = 1.6 // amplification factor
6 for S′(x,y) ∈ S′ do
7 if S′(x,y)≤ µ+α ·σ: then
8 S′(x,y) = 0

9 S′(y) = normalization(∑x S′(x,y)) // get the normalized
saturation matrix

10 S′(y) = hanning(S′(y)) // noise suppress
11 for i ∈ [0,N−1] do
12 Pi = ∑S′( w

N · i : w
N · (i+1))

13 Pk ← K_LARGEST(P,k) // get the kth largest value
14 σ′ ← STD(P)
15 β = 0.1 // the decreasing factor
16 for i ∈ [0,N−1] do
17 if Pi ≥ Pk: then
18 Pi =

Pi
σ′β

19 B← K-MEANS(P) // k-means clustering
20 f ← CHECK_CODE_MATCHING(B)
21 if f == True: then
22 B =∼ B

11.3 Summary of Questionnaire Survey

The first 3 questions of the questionnaire survey are essay-
content-related choice questions, which are the superficial
tasks of the test. The real aim is to learn whether the partici-
pants feel or notice any visual abnormality during the process
of reading (Question 6). Two transitional questions (Question
4 and 5) are used to cover it up.

Table 4: Summary of questionnaire survey.
No. Question
1-3 Essay-content-related choice questions

4
Is this test difficult?

(7-point scale, where 7 indicates the most difficult)

5
Did the display device work well?

(7-point scale, where 7 indicates the best functionality)

6
Do you feel abnormal or uncomfortable during reading,

e.g., display glitch/flicker or visual abnormity?
(7-point scale, where 7 indicates the most abnormal)
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