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With the proliferation of smart devices, children can be easily exposed to violent or adult-only content on
the Internet. Without any precaution, the premature and unsupervised use of smart devices can be harmful
to both children and their parents. Thus, it is critical to employ parent patrol mechanisms such that children
are restricted to child-friendly content only. A successful parent patrol strategy has to be user friendly and
privacy aware. The apps that require explicit actions from parents are not effective because a parent may
forget to enable them, and the ones that use built-in cameras or microphones to detect child users may impose
privacy violations. In this article, we propose iCare, a system that can identify child users automatically and
seamlessly when users operate smartphones. In particular, iCare investigates the intrinsic differences of
screen-touch patterns between child and adult users from the aspect of physiological maturity. We discover
that one’s touch behaviors are related to his or her age. Thus, iCare records the touch behaviors and extracts
hand geometry, finger dexterity, and hand stability features that capture the age information. We conduct
experiments on 100 people including 62 children (3 to 17 years old) and 38 adults (18 to 59 years old). Results
show that iCare can achieve 96.6% accuracy for child identification using only a single swipe on the screen,
and the accuracy becomes 98.3% with three consecutive swipes.
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1 INTRODUCTION

Mobile devices such as smartphones have woven into the fabric of daily life by providing always-
on services ranging from communication to working to entertainment. For convenience, parents
tend to share their own devices with their kids at an early age. Recent studies [19, 39] show that
almost 90% of modern children have a moderate ability to use a tablet, and they can be even as
young as 2 years old. Without any precaution on sharing, the premature and unsupervised use of
smart devices has been shown to be harmful to both children and their parents. First, the Internet
hosts a variety of content and children can be easily exposed to violent or adult-only images and
videos [31, 38], if not guided properly. Actually, children are more likely to be attracted by games
and become addicted due to their limited self-control ability, resulting in both physical and mental
illness. It is reported that today, children with anxiety are more common than before [35] due
to the influence of online content. Second, when children use their parents’ smart devices, they
may leak private information such as photos unintentionally, or purchase goods without parents’
consent. According to a report from the Federal Trade Commission (FTC) [8], in-app purchases
from children during the past few years are valued at more than $70 million in Amazon, $32.5
million in Apple, and $19 million in Google. Thus, parent patrol of smart devices for child users is
urgently needed.

Various regulations from governments and organizations are established to provide guidance
on content access, such as the healthy media use guidelines from the American Academy of
Pediatrics [30] and the Child Online Protection Initiative from the International Telecommuni-
cation Union (ITU) [18]. Based on those regulations, many parent patrol apps are developed [10,
21]. Although such apps are effective in content access control, they require to know in advance
that the current users are children. Typically, this is achieved by manual activation from parents.
Alternatively, images [4, 26] or voice data [25, 27] can be utilized to infer the age of users, which,
however, might be privacy violating.

In this article, we ask the following question: can we identify child users in an automatic and
friendly way?—meaning that the identification requires no explicit user intervention and can au-
tomatically differentiate a child from an adult transparently while preserving privacy. To this end,
we try to find age-related differences between adults and children based on their touchscreen in-
teractions. Our idea is inspired by touch-based user authentication approaches [11, 22, 34, 40], but
these approaches cannot be applied to child identification trivially. This is because authentication
focuses on finding distinctive characteristics of a specific user, yet child identification aims at find-
ing common distinctive characteristics among a group of users at similar ages. Identifying group
characteristics is challenging for the following reasons. First, the group could contain a large num-
ber of users, and the characteristics of users within the same group may vary greatly. Second, the
characteristics of one group may overlap with another group. For instance, the film rating system
from the Classification and Rating Administration (CARA) [6] requires to differentiate children
that are younger than 13 from ones between 13 and 17, which is challenging, and to the best of
our knowledge cannot be accomplished using existing touch-based child identification methods
[14, 23, 37].

To overcome the aforementioned challenges, we examine the underlying difference between
child and adult users from the aspect of physiological maturity, and propose iCare to identify
child users in an automatic and implicit manner. We investigate and extract three key age-related
features—hand geometry, finger dexterity, and hand stability—which are proven to be age repre-
sentative. The three macro features are further extended to 53 sub-features to capture the dis-
tinct characteristics of children. To obtain them, we carefully select two natural and commonly
used interaction gestures—tap and swipe—as our target touch behaviors. To make the experiment
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Fig. 1. iCare can identify child users automatically and seamlessly based on their touch behaviors and
enable a proper mode correspondingly.

data comprehensive and original, we manually design four tasks for data collection, including two
screen-unlocking methods (both password and pattern based) and modifications of two popular
applications.

We envision that iCare can support both device- and application-based patrol control. For the
former, iCare monitors screen-unlocking operations upon a user’s attempt to unlock a device, and
the device can then enter the proper mode correspondingly, as shown in Figure 1. For the latter,
after the user unlocks a device (or the screen locking is disabled), iCare collects in-app touch
behaviors to facilitate a specific application to decide the age of the current user. In the whole
process, the user is unaware of the existence of iCare, as no explicit involvement is required from
users. A dataset on 100 people including 62 children (3 to 17 years old) and 38 adults (18 to 59 years
old) verifies the effectiveness of iCare, and the evaluation results indicate that iCare can achieve
an accuracy of 96.6% with a single swipe and 98.3% with multiple consecutive swipes.

To the best of our knowledge, this is the first work on detecting child users older than 11 based
on touch patterns. Our main contributions include the following:

• We propose iCare, an effective approach to automatically detect child users on smartphones
without compromising user experience and violating privacy.

• We examine the underlying difference between child and adult users in terms of their touch
behaviors when operating smart devices, and explore three key age-related features (hand
geometry, finger dexterity, and hand stability) that are represented in 53 sub-features to
capture the distinct characteristics of children.

• We evaluate iCare using the dataset collected from 62 child users (3 to 17 years old) and
38 adults (18 to 59 years old). Our dataset is collected in the wild during users’ normal oper-
ations without any constraints. Evaluation results demonstrate that iCare can achieve an
accuracy of 96.6% using only a single swipe, and the performance can be further improved
to 98.3% with three consecutive swipes.

The rest of the article is organized as follows. In Section 2, we first review the work related
to our problem. Then, we explain the motivation of this article and introduce the basic idea of
iCare in Section 3, then present the system overview and design details of iCare in Section 4.
Section 5 evaluates the performance of iCare with extensive experiments, and Section 6 measures
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its usability and user acceptance rate. Afterward, we discuss the limitations and future work in
Section 7 and conclude our article in Section 8.

2 RELATED WORK

In this section, we present studies relevant to ours. Specifically, we discuss the aspects related to
child identification and user authentication.

2.1 Child Identification

Much attention has been devoted to recognizing child users from adults. Existing approaches can
be divided into two categories: the explicit classification based on extra input information (images,
voice, etc.) and the implicit classification based on data captured opportunistically, such as gesture
measurements from user behaviors.

Explicit classification. Basaran et al. [4] introduce a classification system (ChildSafe) that exploits
human skeletal features collected by 3D depth cameras to identify children. Meinedo and Trancoso
[25] propose a paradigm to use acoustic and prosodic features to differentiate age and gender. Al-
though those approaches show proper detection and classification of children (e.g., greater than
97%), utilizing sensors such as built-in cameras and microphones may receive strong resistance
from privacy-savvy users because the private information may need to be uploaded to a cloud
server.

Implicit classification. Pental [31] infers computer users’ age and gender based on keystrokes
from a keyboard and mouse. In the areas of touch-based devices, Vatavu et al. [37] utilize touch co-
ordinates to divide users into age groups. Hernandez-Ortega et al. [14] utilize the Sigma-Lognormal
theory to capture users’ neuromotor skills, which can distinguish children from adults. These two
methods [14, 37] only identify children younger than 6 years. Our previous work utilizes the touch
behaviors and extracts related features to capture the age information and pushes the boundary to
11 years [23]. However, it is still insufficient to satisfy the requirement of some regulations, such
as the CARA film rating system’s distinct age of 17. In this article, we improve our previous work
by investigating the theoretical foundation of iCare from the aspect of physiological maturity,
exploring new features that capture the hand stability information of user interactions to achieve
higher identification accuracy, and validating the usability and efficiency of iCare with more users
and extensive experiments. In this way, iCare achieves identifying children of various ages who
may behave similarly to adults. In addition, existing work [14, 37] uses particular gestures (e.g.,
dragging two targets simultaneously with two fingers). iCare, however, utilizes a wider variety of
simple operations, such as swiping and tapping.

2.2 User Authentication

In addition to child identification, our work is inspired by the literature of touch-based user au-
thentication. Frank et al. [11] investigate the applicability of using touchscreen inputs to con-
tinuously authenticate users. They extract 30 behavioral features from raw touchscreen logs and
justify that simple touch movements are sufficient to authenticate a user. Li et al. [22] describe a
continuous user authentication mechanism for smartphones by checking the user’s finger move-
ment patterns. Zheng et al. [40] extract four features (acceleration, pressure, size, and time) from
smartphone sensors and implement a verification mechanism to validate whether an authenticat-
ing user has the true ownership of a smartphone. In HMOG, Sitová et al. [34] introduce a new
set of biometric behavioral features (hand movement, orientation, and grasp) for continuous au-
thentication on smartphones. These features can unobtrusively capture subtle micro-movements
generated when users tap a screen. These studies mainly focus on finding distinctive characteristics
of a specific user for identification, whereas our work aims at exploring the common distinctive
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Fig. 2. Skeleton of a human hand. Fingers are numbered as: (1) thumb, (2) index, (3) middle, (4) ring, and
(5) little.

characteristics among a group of users at similar ages. Identifying group characteristics can be
challenging because the characteristics of users in a group may have a large variance and the ones
from two groups may overlap. Our work overcomes such challenges and manages to identify child
users.

3 MOTIVATION AND BASIC IDEA

iCare targets to identify child users on smartphones in a continuous and natural way by utilizing
the features extracted from user operations. Specifically, the identification should be continuous,
user friendly, and privacy preserving (i.e., without requiring extra operations from users or violat-
ing privacy). To this end, we investigate the following two questions. First, what kind of features
should be squeezed to represent the age-relevant characteristics of children? Second, what actions
or operations should be utilized to obtain the features?

To investigate, we resort to the essential difference of maturity between children and adults.
According to human engineering and kinesiology, common characteristics can be found among
people of similar age groups, such as children and adults [28, 36]. The underlying principle is that
physiological maturity is different for people of various age groups and their interactions with
smartphones, therefore, show discrepancies across age groups. Specifically, human hands develop
with age, and the hand development then affects the user’s interaction with smartphones.

Hand kinematics of humans. Research in anatomy and biomechanics has shown that the human
hand is a highly complex and elegant biomechanical device capable of both gross and fine motor
skills [1]. This dexterity emerges from the unique configuration of bones, joints, and muscles. A
human hand includes 27 connected bones divided into five groups: 8 carpal bones, 5 metacarpal
(MC) bones, 5 proximal phalanges (PP), 4 medial phalanges (MP), and 5 distal phalanges (DP), as
shown in Figure 2. They are further connected by six types of joints: the carpometacarpal (CMC)
joints, the intermetacarpal (IMC) joints, the metacarpophalangeal (MCP) joints, the proximal in-
terphalangeal (PIP) joints, the distal interphalangeal (DIP) joints, and the interphalangeal (IP) joint
of the thumb [13]. Muscles, such as the extensor digitorum communis (EDC) in the forearm, have
insertions in multiple joints. The activation of such muscles results in the excursion of multiple
tendons, which enables the abundant functions of human hands. As a result, the developmental
levels of bones and muscles impact the kinematics of the human hand.
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Fig. 3. System overview of iCare.

Hand development of children. The immature child body develops with age. In forensic science,
child age can be estimated by measurements of carpals and epiphyses [5]:

Aдe = c0 + c1д + c2Bo/Ca + c3N0 − c4s − c5N0s, (1)

where д is a variable equal to 1 for boys and 0 for girls, Bo/Ca is the ratio between carpal bones
area and carpal area, N0 is the number of teeth with complete root development, s is the sum of the
normalized open apices, and c0 − c5 are non-negative constants. Therefore, the length and breadth
of children’s hand bones increase with age, and adults have relatively larger hands and their sizes
are stable [16]. For instance, adults (18 to 40 years) have hands 1.4 times longer and 1.3 times wider
than those of children (5 to 12 years) [17]. Similarly, the speed of hand dexterity improves with
age among children [20, 32]. A test in a group of 237 normal, right-handed children between 5 and
8 years also shows that the rapidity of finger movements increases with age [9]. In the meanwhile,
the children’s grasp strength becomes steady and grows stronger with age due to the development
of muscles. As a result, older children can generally hold things more stably than younger ones
[17, 24].

How does hand development affect a user’s interactions with mobile devices? As children grow,
they improve their abilities on touchscreens in terms of both task completion time and accuracy [3,
38]. For instance, they can tap and drag faster on touchscreens. In particular, children older than
5 years perform taps 4 times faster and drag items 1.3 times faster than those younger than 4 years.
In addition, their operations become more accurate with the increase in age. For example, children
older than 5 years can press approximately 25% closer to the centers of a target area than those
younger ones. It is foreseeable that the discrepancy between adults and children can be larger,
especially for young children.

We envision that the aforementioned physiological differences are intrinsic and can be useful
in identifying child users, and we extract these age-related characteristics of child users from their
normal touch operations on smartphones. Specifically, we elaborate on child-relevant character-
istics from three aspects: hand geometry, finger dexterity, and hand stability, as we will show in
detail in Section 4.3.

4 DESIGN

The system overview of iCare is shown in Figure 3. In general, iCare takes swiping and tapping
as input and records the corresponding data from the touchscreen, accelerometer, and gyroscope.

ACM Transactions on Sensor Networks, Vol. 16, No. 4, Article 35. Publication date: July 2020.



Identifying Child Users via Touchscreen Interactions 35:7

Data pre-processing is then performed on the accelerometer and gyroscope data to solve the atti-
tude angles, which are merged with the touchscreen data based on timestamps before being divided
into strokes. Three key features (hand geometry, finger dexterity, and hand stability), which are
represented in 53 sub-features, are extracted to capture the age-related characteristics embedded
in each stroke. Those features are then fed into an ExtraTrees (ET) classifier, from which multiple
consecutive outputs are combined to reach a final decision (i.e., whether the current user is a child
or not).

4.1 Gesture Choices

To implicitly capture the behavior differences between child and adult users on mobile devices, we
have considered the following three criteria when selecting interaction gestures.

Generality and easy-to-use. Generality ensures that an interaction gesture can be widely adopted
by both child and adult users. The gesture should also be supported by most mobile applications
for implementing abundant functionality so that the data can be easily acquired for classification.
Additionally, the gesture should be easy to use for both children and adults. A complicated gesture
may cause child users to be frustrated and lead to unsuccessful gestures.

Unobtrusive. To collect data in an unobtrusive way, the gesture should be performed naturally
without requiring users to perform extra and abnormal operations or interrupting their existing
interactions with smartphones. In other words, the gesture should be a part of users’ daily opera-
tions on smartphones.

Distinguishable. Furthermore, the gesture should be able to contain sufficient behavior infor-
mation such that it can distinguish children from adults. Note that representativeness is more
important than richness. For example, some gestures may contain rich information and behave
well for user authentication, but they may fail to be qualified for child user identification due to
the poor generalization capability of extracting group characteristics.

4.1.1 Gestures on Smartphones. Figure 4 shows eight commonly used gestures on smartphones.
The first three are single-touch gestures, and the others are multi-touch gestures that can be used to
implement augmented functionality (e.g., zoom in/out in a map application to view nearby places
of a location). According to our observations, the last two gestures—press and swipe and rotate—
are difficult for children younger than 9 years to perform independently, and thus they cannot
satisfy the criterion of easy-to-use. Moreover, these two gestures are not well supported by most
applications (i.e., not general). The gesture of press and tap is not frequently used by children due
to their poor finger dexterity, although it is adopted by most adult users. The gestures of pinch and
spread are commonly used when viewing maps or images, but they are rarely performed in other
applications.

Using tap and swipe. Considering all of the criteria, we finally select tap and swipe as our gestures.
Tap is one of the most essential interactions with mobile devices. A single tap is usually performed
with one of the fingertips for pressing a button, selecting an image, or typing on an on-screen
keyboard. As it is simple and well practiced, tapping has been used in almost all mobile applications
and performed by users across all age groups. In particular, tap gestures are necessary to access
applications, locally store information on smartphones, or place orders online.

Swipe is another fundamental gesture to interact with smartphones. Users perform this gesture
by moving one of their fingertips (usually a thumb or index finger) across the screen without losing
contact. Swipe gestures can enable many basic functions, such as sliding the current page hori-
zontally or vertically for browsing videos/images. In particular, when a child uses entertainment
applications, swipe will be the basic operation for switching views in games or browsing videos
in a list, making it a promising candidate for child identification.
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Fig. 4. Eight commonly used gestures on smartphones. The first three can be conducted with one finger,
whereas the rest require two fingers to perform.

Table 1. Sample of Swipe and Tap Data

Time Action X Y Pressure Size Finger ID

276416631 0 712 1257 0.775 0.339 0
276416644 1 710 1262 0.763 0.321 0
...

...
...

...
...

...
276416702 1 668 1414 0.638 0.286 0
276416710 2 — — — — —
276381043 0 131 112 0.925 0.429 0
276381108 2 — — — — —

4.1.2 Gesture Data. To extract as much behavior information as possible from the selected ges-
tures, we collect data from the touch sensor, the embedded accelerometer and gyroscope that depict
a gesture from different aspects.

Touch data. The touchscreen records a touch action in seven dimensions: the occurred time, the
action type, its X-Y coordinates, the pressure and size of the touch area, and the finger ID. Table 1
gives a sample of the swipe and tap data. A tap generally consists of two actions, touch down
(“0”) and up (“2”), whereas a swipe has one more action, touch move (“1”). A swipe consists of a
sequence of touch points, which starts from touching the screen and ends with finger lifting. The
event time is recorded in milliseconds and based on the smartphone’s non-sleep uptime since boot.
Both the pressure and size values are normalized to a range between 0 and 1, where 0 means no
pressure or no size at all.

Accelerometer and gyroscope data. The accelerometer and gyroscope record a sampling point in
five dimensions: the occurred time, the sensor type, and the amplitude in the X-, Y-, Z axis. Table 2
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Table 2. Sample of Sensor (acce. and gyro.) Data

Time Sensor Type X Y Z

276391548 0 0.05269043 7.2640944 6.662945
276391558 1 –0.19813229 0.15116069 –0.048850477

Fig. 5. Four tasks inserted with gesture capture function, including two phone-unlocking methods and two
popular entertainment apps.

gives a sample of the accelerometer and gyroscope data, where the sensor type “0” indicates the
accelerometer and “1” refers to the gyroscope.

For the sake of convenience, we collectively call the selected swipe and tap gestures strokes, and
refer to the data collected by the touch sensor as the touch data, and the data collected by the
accelerometer and gyroscope as the sensor data hereafter.

4.2 Data Collection Tasks

iCare supports both device- and application-based patrol control. In other words, iCare identifies
child users upon their phone unlocking and interactions with a specific application. To fulfill the
preceding goal and collect data close to smartphones’ real-world usage, we design four tasks on the
Android platform: (1) for phone unlocking, we focus on two popular screen-unlocking methods
(i.e., numerical and graphical unlocking),1 and (2) for applications, we focus on game playing and
video watching as representative applications since they are popular among children.

Task 1 (Numerical Unlock). This task requires users to unlock the phone with a given numeric
PIN code. As shown in Figure 5(a), a PIN number appears at the top of the screen and users are
required to input it. Our app generates two four-digit and two six-digit PIN numbers, and each PIN
randomly appears twice. Each user unlocks the phone eight times if they succeed every time. We
set the maximum number of unlocking attempts to be 10. As an incentive, we reward the user a
star each time the correct PIN is entered. In this task, tap gestures introduced by number entering
are collected.

Task 2 (Graphical Unlock). This task requires users to unlock the phone with graphical patterns.
Figure 5(b) shows an example where a graphical pattern appears at the top of the screen and users

1The facial recognition and fingerprint methods are beyond the scope of this article.
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are required to draw the same pattern but with no constraint on the direction. Our app generates
six graphical patterns, and each pattern randomly appears once. Compared with Task 1, this task
requires users to draw each pattern successfully no matter how many times they try. In this task,
swipe gestures introduced by pattern drawing are collected.

Task 3 (Games). This task is based on a popular puzzle game named 2048 as shown in Figure 5(c).
Users swipe vertically or horizontally to combine two attachable blocks with the same number (e.g.,
swipe up or down to merge the two vertical “2”s in the left-most column in Figure 5(c)). Then, a
single one containing the sum will replace them automatically and a new number (2/4) randomly
appears in one of the blank blocks after each valid swipe. The game is over when all spaces are
filled with numbers and no move is available to merge the same two blocks. Users are allowed to
swipe in any direction to play the game. In this task, swipe and tap gestures introduced by merging
numbers and touching the screen, respectively, are collected.

Task 4 (Watching Videos). This task requires users to play a phenomenal video social network
application named TikTok [33], as shown in Figure 5(d). TikTok is a platform for sharing videos
that usually last for 15 seconds or less. It is popular among the young generation, and similar ap-
plications can be found in many countries. Users swipe vertically to switch videos (i.e., swipe up to
watch new videos and down to look back). The videos are auto-played and users can pause/resume
by tapping the screen. Users can also follow the uploader, give likes, leave comments, or share the
video by tapping the buttons on the right side. Thus, swipe and tap are the main interactions of
TikTok, and swipe gestures introduced by switching videos and tap gestures introduced by paus-
ing/resuming videos or giving likes are collected in this task.

4.3 Feature Extraction

To capture the underlying touch behavior differences among children and adults resulted from
physiological maturity, we examine three types of age-related characteristics: hand geometry, fin-
ger dexterity, and hand stability. We represent the first two with 35 fine-grained features inferred
from the touch data and the last one with 18 features inferred from the sensor data. Table 3 de-
scribes the features extracted from the touch and sensor data. Since a tap usually lasts for a short
time, we extract an 8-feature subset from the 35 touch features for the tap gesture. In total, we
design 53 features for a swipe (35 touch features, 18 sensor features) and 26 features for a tap
(8 touch features, 18 sensor features).

Hand geometry. Due to the different developmental stages in physiology among children and
adults, their hand geometry tends to be distinctive in terms of hand size, finger length, and strength:
children have smaller hands, as well as shorter and weaker fingertips, than adults in general. Con-
sequently, children tend to touch the screen in a narrower range and swipe for a shorter trajectory
length. An interesting finding is that the weaker fingers of children do not necessarily result in
the lower touch pressure. In contrast, they press the screen harder. This is possibly because they
are aware of their weak strength and meanwhile are less confident about their operations. Overall,
the variances of hand geometry result in differences in terms of the touch range, touch distance,
touch pressure, and size. Features numbered from 1 to 19 in Table 3 are extracted based on hand
geometry, with touch size at mid-stroke, pressure at mid-stroke, and average touch size being the
three most important features.

Finger dexterity. The finger dexterity associated with children’s interactions with smartphones is
poor compared to that of adults. According to our observation, children perform each touch stroke
on smartphones more slowly and less flexibly than adults do. This is the same case when they try
to switch between two touch actions, such as from tap to swipe. This can be attributed to the fact
that children’s bodies and fingers have not matured and become fully developed, and they have less
contact with electronic devices compared with adults. As a result, it impacts their reactions when
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Table 3. Extracted Features from Touch (nos. 1–35) and Sensor Data (nos. 36–53) Based on Hand
Geometry (nos. 1–19), Finger Dexterity (nos. 200035), and Hand Stability (nos. 36–53)

No. Feature Description No. Feature Description

1 relative start position of x (Tap) 11 std of touch size
2 relative stop position of x 12 pressure at down (Tap)
3 relative start position of y (Tap) 13 pressure at mid-stroke
4 relative stop position of y 14 average pressure
5 direct end-to-end distance 15 std of pressure
6 trajectory distance 16 x displacement of two consecutive downs (Tap)
7 direction of end-to-end line 17 y displacement of two consecutive downs (Tap)
8 touch size at down (Tap) 18 x displacement of down and last up
9 touch size at mid-stroke 19 y displacement of down and last up
10 average touch size
20 average velocity 28 median velocity of last 3 points
21 maximum pairwise velocity 29 velocity at mid-stroke
22 relative time of feature 21 30 median acceleration of first 3 points
23 std of pairwise velocity 31 median acceleration of last 3 points
24 maximum pairwise acceleration 32 acceleration at mid-stroke
25 relative time of feature 24 33 mean resultant length
26 std of pairwise acceleration 34 stroke duration (Tap)
27 median velocity of first 3 points 35 inter stroke time (Tap)
36 average pitch 45 RMS of pitch
37 average yaw 46 RMS of yaw
38 average roll 47 RMS of roll
39 std of pitch 48 minimum of pitch
40 std of yaw 49 minimum of yaw
41 std of roll 50 minimum of roll
42 average deviation of pitch 51 maximum of pitch
43 average deviation of yaw 52 maximum of yaw
44 average deviation of roll 53 maximum of roll

implementing a task using fingers. Considering finger dexterity, we extract 16 features numbered
from 20 to 35 in Table 3. The finger dexterity mainly impacts the velocity, acceleration, and task
duration, with inter stroke time, median acceleration of last 3 points, and stroke duration being the
three most important features.

Hand stability. As a joint effect of hand geometry and finger dexterity, the hand stability of
children is poor compared to that of adults when holding smartphones. Due to the ever-increasing
screen size, children with small hands have difficulty holding smartphones smoothly and stably
in the palm of their hand. The situation is even worse when they are asked to perform tasks on
smartphones. We observe that children are more likely to wobble phones with large angles and
be attracted by surroundings, resulting in frequent lift up and down. Considering the discrepancy
in hand stability, we extract 18 features numbered from 36 to 53 in Table 3 in terms of the triaxial
attitude angles derived from the accelerometer and gyroscope, with maximum of yaw, yaw, and
minimum of yaw being the three most important features.

We take one feature from each feature category as an example and have a close examination.
Figure 6 shows the distributions of average touch size, stroke duration, and std of yaw among 10
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Fig. 6. Average touch sizes (hand geometry feature), stroke durations (finger dexterity feature), and standard
deviations of yaw (hand stability feature) for 10 users. Users 1 through 6 are children younger than 10 years,
and the rest are adults older than 20 years.

users, including five adults older than 20 years and five children younger than 10 years. These
features are extracted from 500 swipes (50 swipes per user). The results confirm our preceding
analysis that children have relatively smaller touch areas due to their smaller hands, spend more
time on each operation due to their poor finger dexterity, and wobble phones more frequently due
to their bad hand stability.

4.4 Classifier Choices

To classify children and adults based on the above features, we implement four machine learning
classifiers, namely k-Nearest-Neighbors (kNN), Support Vector Machine (SVM), Random Forests
(RF), and ET.
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Fig. 7. ROC curves of four classifiers. Legends are in the form “label (EER, AUC),” where label indicates one
of the four classifiers, EER is the equal error rate, and AUC is the area under the ROC.

kNN. kNN is a non-parametric method that has no underlying assumption of data, and each
sample is assigned to one class based on a majority vote of its neighbors [2]. kNN does not do
any generalization based on the training data, and therefore it is simple, fast, and yet with highly
competitive results.

SVM. SVM is a popular and powerful tool for binary classification, which outputs an optimal
hyperplane that maximizes the margin between two classes [7]. More importantly, it can solve the
non-linearly separable problem by mapping data into a higher-dimensional space using the kernel
trick. Here, we use the radial basis function (RBF) as our non-linear kernel.

RF. RF is an efficient algorithm that can classify large amounts of data with accuracy [15]. It is
an ensemble method that constructs a number of decision trees during training time and outputs
the class label with the most votes from all models. It also estimates the importance of each feature
in classification.

ET. ET is another tree-based ensemble classification approach that fits a number of randomized
decision trees on various sub-samples of the dataset and uses averaging to improve prediction
accuracy and avoid over-fitting [12]. Compared with RF, this method drops the idea of using boot-
strap copies of the learning sample and tests random splits over a fraction of features instead of
all possible splits. As a result, ET is generally cheaper to train from a computation point of view.

We compare these classifiers in Section 5, and the results are shown in Figure 7. For the sake
of high classification accuracy and low computation cost, we employ ET as our classification
algorithm.

5 EVALUATION

To evaluate the performance of iCare, we conduct experiments with 68 child users and 32 adult
users across 6 months, and our study obtained the approval of the Institutional Review Board
(IRB). In addition to the overall performance with a single stroke, we investigate the performance
improvement with multiple consecutive strokes, the scalability of iCare, and the performance
discrepancy among various tasks, age/gender/race groups, and age boundaries. In summary, the
performance of iCare can be summarized as follows:

• iCare can achieve an equal error rate (EER) of 3.4% with a single swipe and 13.0% with a
single tap.
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Table 4. Summary of Experimental Smartphones

No. Manufacturer Model OS Size Resolution PPI∗

1 LG Google Nexus 5X Android v.7.1.1 5.2" 1080 × 1920 424
2 LG Google Nexus 5 Android v.6.0.1 4.95" 1080 × 1920 445
3 HUAWEI P10 Plus Android v.8.0.0 5.5" 2560 × 1440 540
4 Samsung Galaxy S6 Edge+ Android v.7.0 5.7" 2560 × 1440 518
∗Pixels per inch.

Table 5. Participants and Collected Data

Group Age
No. of
Users

No. of
Males

No. of
Females

No. of
Whites

No. of
Asians

No. of
Taps

No. of
Swipes

G-Children

3∼5
6∼9

10∼13
14∼17

12
23
14
13

7
13
7
5

5
10
7
8

7
7
2
0

5
16
12
13

1,214
1,351
874
945

1,506
4,766
2,737
2,792

G-Adults

18∼29
30∼39
40∼49
50∼59

27
7
3
1

18
6
2
1

9
1
1
0

1
1
0
1

26
6
3
0

1,279
469
201
54

10,282
2,077
582
156

Total 3∼59 100 59 41 19 81 6,387 24,898

• The accuracy of iCare can be further improved by multiple consecutive strokes. iCare
achieves an EER of 1.7% with three consecutive swipes and 3.9% with three consecutive
taps.

• iCare shows no obvious performance discrepancy among different tasks, which demon-
strates its generality.

• iCare is able to scale to new users and phones, which validates its scalability for real-world
deployment.

• The identification performance across various age, gender, and race groups has a slight
discrepancy.

• iCare is able to classify adults and children with different boundaries (e.g., boundaries other
than 17) and multiple age boundaries (e.g., 13 and 17).

5.1 Experimental Setup

5.1.1 Device Setup. During the experiment, we use four smartphones: (1) Google Nexus 5X,
(2) Google Nexus 5, (3) HUAWEI P10 Plus, and (4) Samsung Galaxy S6 edge+. The detailed infor-
mation of each device is revealed in Table 4, among which the Nexus 5X is the main device used for
data collection, and the other three phones with various sizes are used to evaluate the scalability
of iCare to new devices.

We implement Tasks 1 through 4 on the Android platform. The first two are based on self-
developed apps, whereas the latter are modified based on existing apps. The data collection module
of iCare runs in the background of the experimental devices. We turn off the rotation function
during data collection to eliminate biases associated with various holding ways.

5.1.2 Participant. We recruit two groups of users in our experiment: G-Children with 62 chil-
dren from 3 to 17 years old and G-Adults with 38 adults from 18 to 59 years old. Table 5 summa-
rizes the demographics of the participants. We then divide them into eight fine-grained sub-groups
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given their different growth stages. In G-Children, we have more children aged 6 to 9 years since
they are more active and more likely to cause privacy or monetary damage to their parents, com-
pared to younger and elder children. In addition, each group contains both male and female users
from two races: Asian and White [29].

All participants are required to remain seated while holding the phone in their hands to play. All
child participants report that they have previously used touchscreen phones. Before the start of
the experiment, we briefly explain to participants how to play with the apps and let them become
familiar with them.

5.1.3 Datasets. All of the participants finish the four tasks. In Task 1, we collect 3,469 taps
among the G-Children group and 1,504 taps among the G-Adults group. Note that although the
number of children aged 3 to 5 years is not the largest, we collect the most taps per child compared
to older children and adults. That is because children in this age group are more likely to enter
PINs incorrectly and hence have more attempts. In Task 2, we collect 520 and 268 swipes from
the group of G-Children and G-Adults, respectively. In Task 3, we collect 138 taps and 9,200 swipes
from the group of G-Children, and 103 taps and 11,684 swipes from the group of G-Adults. The G-

Adults group does better in the 2048 game in general, and thus more swipes are collected among
this group. However, a fair amount of children state that they have played this particular game
or a similar one before. Most of the children between 3 and 5 years are able to reach 64 or larger,
whereas the ones between 6 and 11 years reach at least 128, and the highest block reached is 512
by a 5th grader (10 years old). In Task 4, we collect 777 taps and 2,801 swipes from the group of
G-Children, and 396 taps and 1,145 swipes from the group of G-Adults. Among all tasks, Task 4
is the easiest to perform for most children in the G-Children group. As not all children between
3 and 5 years are sensitive to numbers or patterns, some of them are slow in completing former
tasks, especially Task 1. However, nearly all children younger than 18 years develop an immediate
attraction to Task 4. Most children between 6 and 17 years state that they have used TikTok or
similar applications at home and are able to use the search function expertly. Children between 3
and 9 years show undivided attention when watching videos and giving likes, which validates a
comment made by a kindergarten teacher that young children are easily attracted to live videos
and audios. Overall, we collect 6,387 samples for the tap dataset and 24,898 samples for the swipe
dataset.

5.2 Metrics

To evaluate the performance of the binary classifiers, we choose the commonly used performance
metrics: the area under the curve (AUC) and the EER. The receiver operating characteristic (ROC)
curve is a graphical plot that illustrates the performance of a binary classifier system as its dis-
crimination threshold is varied, and is created by plotting the true accept rate (TAR) against the
false accept rate (FAR). The TAR is the probability of correctly identifying a child, whereas the
FAR is the probability that the classifier incorrectly accepts a child. The AUC is a value between 0
and 1, and a large value indicates better performance. The EER is the rate when both accept and
reject errors are equal, and the lower this value, the better the classifier.

5.3 Results

5.3.1 Impact of Classifier Choices. In this section, we evaluate the performance of the afore-
mentioned four classification methods (i.e., kNN, SVM, RF, and ET) in identifying child users.

Setup. We label our datasets based on which group a stroke sample is from. All stroke samples
from G-Adults are labeled as class 0, and the strokes from G-Children are labeled as class 1. Then,
we randomly divide the labeled tap and swipe datasets into two parts: 80% for model training and
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Fig. 8. ROC curves with different numbers of swipes/taps. Legends are in the form “label (EER, AUC),” where
label indicates the number of consecutive swipes/taps used.

20% for model testing. For the swipe dataset, we set the parameter k = 7 for kNN, the complexity
parameter c = 1.4, the gamma parameter γ = 0.15 for SVM, and the number of trees to 200 for
RF/ET. For the tap dataset, k = 9, the choice of c = 1.4 and γ = 0.7, and the tree number is 100.
All parameters are determined and optimized by the grid search with the stratified fivefold cross
validation using the training datasets. As the training and testing datasets are both small, the time
cost is less than 1 second for both training and classification with all four classifiers.

Results. Figure 7 shows the ROC curves of the four classifiers based on the swipe and tap datasets,
respectively. The results of kNN, SVM, RF, and ET are colored in red, blue, green, and cyan, re-
spectively. For both datasets, RF and ET classifiers outperform kNN and SVM. All of the classifiers
achieve better performance on the swipe dataset than on the tap dataset because a swipe usually
contains more data points, and thus more features can be extracted for classification. Overall, RF
achieves a 5.9% EER and a 0.98 AUC on the swipe dataset, whereas ET shows better results with
a 3.4% EER and a 0.99 AUC. Even with a single tap, the ET algorithm can achieve a 13.0% EER
and a 0.94 AUC. The result indicates that it is promising to identify children through only a single
stroke. Given the accuracy performance and the computation cost, we choose ET as our classi-
fication algorithm and use the aforementioned optimized parameters by default in the following
experiments.

5.3.2 Multiple Strokes. Although with only one swipe iCare can achieve an EER of 3.4%, com-
bining multiple consecutive strokes for classification is likely to further improve the accuracy. In
this section, we explore the appropriate number of consecutive strokes used for classification.

Setup. In this set of experiments, we prepare the testing datasets by randomly choosing 10% la-
beled consecutive samples from participants at each age. Overall, the swipe testing dataset consists
of 2,500 samples and the tap testing dataset consists of 660 samples, which are evenly distributed
among children and adults. Then, we train an ET model using the remaining swipe and tap samples,
respectively. Instead of classifying all swipes/taps individually and reaching a final decision by the
majority vote, we combine multiple consecutive outputs at an earlier stage by their probabilities
and average them as our final predicted probability.

Results. Figure 8 shows the ROC curves by varying the number of swipes/taps taken for a classi-
fication decision. The classification error can be significantly decreased by increasing the number
of strokes. The EER decreases to 0.9% for swipe and 3.0% for tap, as we increase the number of
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Fig. 9. ROC curves with different tasks. Legends are in the form “label (EER, AUC),” where label indicates
one of the four tasks.

strokes to five. The results have clearly demonstrated that using multiple strokes improves the ac-
curacy. To strike the balance between usability and accuracy, we choose the number of consecutive
strokes used for classification to be 3 in the following experiments.

5.3.3 Performance of Different Tasks. Since various tasks involve different numbers and types
of strokes, we evaluate the performance of each task, respectively.

Setup. In this set of experiments, we first separate the labeled swipe/tap dataset into sub-datasets
associated with each task. Then, we randomly divide the sub-datasets into two parts: 80% for model
training and 20% for model testing. During experiments, swipes are collected in Tasks 2, 3, and 4,
and taps are collected in Tasks 1, 3, and 4. However, because not all users tap the screen during the
2048 game and the tap samples collected are quite limited, we evaluate the performance of Task 3
based on swipes only.

Results. As shown in Figure 9(a), with three consecutive swipes, Tasks 2, 3, and 4 can achieve
an EER below 1.9% and an AUC of 1.0. Task 3 (i.e., the 2048 game) shows the best accuracy since
it has a much more constant pattern and we collect the most swipes from it. Similarly, with three
consecutive taps, Task 1 achieves an EER of 4.4% and an AUC of 0.99, and Task 4 achieves an EER of
4.6% and an AUC of 1.0, as shown in Figure 9(b). In general, iCare shows no obvious performance
discrepancy on different tasks based on either swipes or taps. Since the gestures we select (i.e.,
swipe and tap) are the most basic interactions in almost all of the applications, we believe iCare
is generic and likely to scale to other applications.

5.3.4 Scalability to New Users. In real life, iCare may need to cooperate with new users. To
investigate the scalability of iCare to new users, we conduct the following experiments.

Setup. From the 100 users, we choose 99 users for training and designate the remaining one
to be introduced as a new user to the trained system. In other words, we use the labeled stroke
samples from 99 users to train the ET classifiers, and we use the stroke samples from the remaining
user to test the scalability to new users. The classification threshold is set to 0.5 for swiping and
0.575 for tapping according to the EERs in Figure 8. To eliminate the random error, we repeat the
experiment 100 times until each user serves as the new user once.

Results. The CDF of the TARs in Figure 10(a) reveals that, based on swipes, iCare can success-
fully classify 83% of new users with a TAR over 0.8, 64% of new users with a TAR over 0.9, and,
more remarkably, 42% of new users with a TAR of 1.0. iCare shows a slightly lower accuracy when
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Fig. 10. Scalability of iCare to new users (a) and new smartphones (b).

based on taps, but half of the new users can still be classified with a TAR over 0.87. We believe
that the scalability of iCare is likely to be limited by the small user size at present. In real-world
deployment, we can build iCare with a large user dataset and combine multiple types of gestures.
More importantly, the pre-trained iCare model can be updated during user usage to adapt to new
users and scenarios. Specifically, the pre-trained model can only be used when iCare initializes on
new devices. During usage, iCare can adjust its model with the new user data and build a more
specific model for concrete scenarios such as the in-home scenario. With the update technique,
we believe that iCare can scale to new users better in practice.

5.3.5 Scalability to New Phones. Users may access more than one phone in real life, and as a
result, iCare shall classify users across devices (i.e., users enrolled with one phone shall be able to
be classified on other phones). To investigate the scalability of iCare to new phones, we conduct
the following experiments.

Setup. From the 100 users, we randomly choose 10 users including both child and adult users to
conduct Task 3 on four phones besides the Nexus 5X. The detailed information of each phone is
revealed in Table 4. To mimic the real cases, the four used smartphones are of various sizes given
that different screen sizes may impact the way users hold and use the phone. We train the ET
classifier with swipe samples collected from the Nexus 5X, and we test it with data collected from
the other three phones, respectively. The classification threshold is set to 0.5 according to the EERs
in Figure 8.

Results. We plot the CDF of the TARs for each phone in Figure 10(b), which reveal that iCare
can successfully classify users across devices with an average TAR of 96.5% for Nexus 5, 96.6% for
HUAWEI, and 97.9% for Samsung. The results indicate that different devices and screen sizes do
not necessarily impact the identification of iCare. Together with the ability to identify new users,
we believe iCare is scalable in real-world deployment.

5.3.6 Influence of Different Age Groups, Genders, and Races. Due to the difference in growth
stages, users from various age groups may show discrepancies in the performance of iCare. To
understand how users from different age groups behave on the classification results, we perform
an analysis on the eight fine-grained sub-groups: children 3 to 5 years old (G-C-1), children 6 to
9 years old (G-C-2), children 10 to 13 years old (G-C-3), children 14 to 17 years old (G-C-4), adults
18 to 29 years old (G-A-1), adults 30 to 39 years old (G-A-2), adults 40 to 49 years old (G-A-3), and
adults 50 to 59 years old (G-A-4).
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Fig. 11. Performance of different age groups (a), genders (b), and races (c).

Setup. In this set of experiments, we use 80% of samples of the labeled tap and swipe datasets
for training and use the rest for testing. The tree number for the ET classifier is set to be 200 for
swiping and 100 for tapping, the number of consecutive strokes used for classification is 3, and the
classification threshold is 0.5 for swiping and 0.575 for tapping according to the EERs in Figure 8.

Results. Figure 11(a) shows the TAR for each sub-group. For both swiping and tapping, we have
much better performance in classifying the G-C-1 group. This is reasonable as younger children
tend to be more different from adults in terms of hand geometry, finger dexterity, and hand stability.
By contrast, iCare has slightly lower performance in classifying the G-C-3 and adult groups. We
assume it is a result of individual differences. Children 10 to 13 years old are in a rapid stage of
growth and development, and thus may show more individual differences compared with younger
or elder child groups. Similarly, as we regard all users older than 18 years as adults and label them
as the same class, such a large age range may introduce significant individual differences and thus
result in the performance decrease. This finding enlightens us that dividing users into more fine-
grained age groups and building corresponding multi-class classifiers may further help improve
the performance of iCare.
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Fig. 12. Performance of iCare with different age boundaries.

Another interesting point is whether users from different genders or races behave the same
with iCare. To investigate this, we group the prediction results based on user gender and race,
respectively. Figure 11(b) and (c) show the TARs for the male, female, Asian, and White group.
Surprisingly, for both swiping and tapping, male users outperform female users and Asian users
outperform White users. We conjecture that one of the reasons is that we have more male and
Asian participants. However, this finding indicates that besides age, we can potentially find com-
mon characteristics among similar gender or race groups of people.

5.3.7 Influence of Different Age Boundaries. In the preceding analysis, we set the age boundary
that partitions children and adults to be 17. However, various countries or districts may have dif-
ferent definitions of the boundary. For instance, American society pays more attention to children
younger than 13 years. To investigate the performance of iCare with different age boundaries, we
conduct the following experiments.

Setup. We set the boundary to be 10, 13, 15 and 17, respectively. Then, we label the swipe/tap
dataset according to the boundary (i.e., samples from users aged above it are labeled as class 0, and
the rest are labeled as class 1). For each boundary, we use 80% of samples for training and 20% of
samples for testing based on either taps or swipes.

Results. The classification results shown in Figure 12 reveal that, based on swipes, iCare achieves
the best EER with the boundary 17 but the discrepancy is not obvious among all age boundaries.
For taps, the best EER occurs with the boundary 15, and the performance is slightly lower given
the age boundary 13. Nevertheless, iCare shows good performance in general and is feasible to
cope with different age boundaries.

5.3.8 Influence of Multiple Age Boundaries. Similar to the CARA film rating system, some coun-
tries or districts may rate an application’s suitability for users or suggest appropriate screen time
for users with multiple age boundaries (i.e., the reasonable screen time might be 1 hour per day
for children younger than 14 years and 2 hours for children 14 to 17 years old). To explore the
possibility of iCare to identify children with multiple age boundaries, we conduct the following
experiments.

Setup. We set two age boundaries, 13 and 17, and label the samples from children younger than
14 years as class 0, samples from children 14 to 17 years old as class 1, and the rest as class 2. We use
80% of samples for training and 20% of samples for testing, and we set the number of consecutive
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Table 6. Multi-Boundary
Identification Based on Swipes

Group TAR FAR

G-Children-13 0.972 0.001
G-Children-17 0.991 0.000
G-Adults 0.999 0.024

Table 7. Multi-Boundary
Identification Based on Taps

Group TAR FAR

G-Children-13 0.962 0.029
G-Children-17 0.951 0.003
G-Adults 0.967 0.033

Table 8. Age Distribution of Surveyed Users
and Their Children

Group Age (years) Number

25–29 8 (6.3%)
30–34 44 (34.9%)

Adult (User) 35–39 41 (32.5%)
40–44 28 (19.8%)
45–48 8 (6.3%)
0–2 8 (6.3%)
3–5 46 (36.5%)

Child 6–9 41 (32.5%)
10–13 16 (12.7%)
14–17 15 (11.9%)

strokes used for classification to be 5 and the classification threshold to be 0.33 for both swiping
and tapping.

Results. Table 6 and Table 7 reveal that, with five consecutive strokes, iCare is able to accurately
classify children with multiple age boundaries. This indicates that iCare is beyond the scope of
identifying children in binary and is capable of multi-age child classification that can augment
more application scenarios.

6 USER STUDY

We measure the usability and user acceptance rate of iCare by conducting a questionnaire survey
among parents with children younger than 18 years, who are also the target users of iCare. The
total amount of valid questionnaires is 126, and the participants cover a large age range without
losing generality. The age distribution of the parents participating and their children are shown in
Table 8, respectively.

During the survey, we ask five yes-no questions for each participant, and the detailed description
of each question and its answers is summarized in Table 9. The results show that 108 of 126 par-
ents are reluctant to let their children use smartphones at a young age, and 96 participants report
that their children will use their smartphones intentionally or unintentionally. Further analysis
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Table 9. Summary of the User Survey

No. Question Yes No

1 Are you willing to let your kid(s) use a smartphone at the present age? 18 108
2 Will your kid(s) use your smartphone at ordinary times? 96 30
3 Do you feel like restricting your kid(s) access to some specific

applications, such as games?
104 22

4 Do you recognize the significance of iCare? 120 6
5 Are you willing to use iCare? 114 12

Table 10. User Selection of
Applications of Which They Intend

to Restrict Children’s Access

Application User Selections

Game 104 (100%)
Video 97 (93.3%)
Photo 19 (18.3%)
Finance 61 (58.7%)
Others 35 (33.7%)

reveals that the older the children are, the less their parents will care about their smartphone us-
age. However, even parents with an open mind about children’s smartphone usage like to restrict
their access to some specific applications, such as games. Among the 104 parents who answer yes
to Question 3, we ask an additional multi-choice question about what applications they like to
restrict their children’ access and offer five options: (1) Game, (2) Video, (3) Photo, (4) Finance, and
(5) Others, as shown in Table 10. Surprisingly, all 104 participants choose “Game,” and more than
93% of users select “Video.” The goal of iCare is in line with the survey results, and the gestures
we select (i.e., swipe and tap) are common in both games and video applications. In addition, 120
of 126 users recognize the significance of our work, and 114 users (>90%) are willing to use iCare
for parent patrol.

In summary, parents with children younger than 18 years do have the requirement to restrict
their children’s access to smartphones, and among applications on the market, games and videos
are their major concerns. As an automatic and implicit parent patrol mechanism, more than 95% of
surveyed parents recognize the significance of iCare and more than 90% of users feel like using it.

7 LIMITATIONS AND FUTURE WORK

Based on the existing framework, several issues remain to be explored.
Diversity of users. As children’s dexterity develops significantly every year and adult users cover

a large age range, dividing them into finer age groups and building a corresponding multi-class
classifier possibly increases overall accuracy. In addition, we observe that some children 3 to
5 years old are slow in reading numbers, yet aged users (i.e., adults older than 70 years) may show
similar behaviors. Since we have not tested users older than 59 years yet, it is interesting to include
more aged users and analyze how poor numeracy will affect touch and sensor patterns, if any.

Discrepancies across genders/races. Given the performance discrepancy across genders and races,
it is worth checking the reasons behind it. One possible cause is the unbalanced training dataset,
thus more female and White users can be recruited to verify it. Another assumption is that, similar
to age, common characteristics are shared among the same gender or race group of people. In this
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case, building separate classifiers for different genders or races may further improve the overall
accuracy.

Limited gestures. There are many other gestures (e.g., double tap, pinch, and spread) that have
not been explored in our study. In reality, users may have to change among different types of
gestures back and forth to complete a task on smartphones. Fusing all types of gestures can result
in a faster classification decision and possibly improve accuracy.

Improving accuracy. Given three consecutive swipes/taps and the accuracy, our method can be
a good supplement for existing parent patrol apps. However, before real-world deployment, the
accuracy shall be improved. We can improve the accuracy by solving the preceding two limitations.
Additionally, other information on smartphones, such as device pairing, can be exploited to derive
users’ characteristics for refining classification results.

8 CONCLUSION

To improve the usability of existing parent patrol applications, this article introduces an implicit
approach to detect whether a child is operating a smartphone without special user attention.
Specifically, we extract the features of hand geometry, finger dexterity, and hand stability from
swipe and tap gestures, and we explore four machine learning algorithms to classify children. Our
pilot study with 62 children and 38 adults shows that the trained ET model can achieve an EER
of 3.4% with a single swipe and the performance can be improved to 1.7% by using three consec-
utive swipes. As well, iCare shows no obvious performance discrepancy on the applications that
are inserted with the gesture capture function and can extend to new users and phones, which
demonstrates its generality and scalability for real-world deployment. In addition to the current
implementation on smartphones, we believe iCare can be easily extended to other smart devices,
such as tablets and smart watches. Future work includes exploring iCare with more users and
devices.
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