
DeMiCPU: Device Fingerprinting with Magnetic Signals
Radiated by CPU

Yushi Cheng
Zhejiang University

yushicheng@zju.edu.cn

Xiaoyu Ji∗

Zhejiang University
xji@zju.edu.cn

Juchuan Zhang
Zhejiang University

juchuanzhang@zju.edu.cn

Wenyuan Xu
Zhejiang University
wyxu@zju.edu.cn

Yi-Chao Chen
University of Texas at Austin

yichao@utexas.edu

ABSTRACT

With the widespread use of smart devices, device authentication has

received much attention. One popular method for device authen-

tication is to utilize internally-measured device fingerprints, such

as device ID, software or hardware-based characteristics. In this

paper, we propose DeMiCPU, a stimulation-response-based device

fingerprinting technique that relies on externally-measured infor-

mation, i.e., magnetic induction (MI) signals emitted from the CPU

module that consists of the CPU chip and its affiliated power supply

circuits. The key insight of DeMiCPU is that hardware discrepancies

essentially exist among CPU modules and thus the corresponding

MI signals make promising device fingerprints, which are difficult

to be modified or mimicked. We design a stimulation and a discrep-

ancy extraction scheme and evaluate them with 90 mobile devices,

including 70 laptops (among which 30 are of totally identical CPU

and operating system) and 20 smartphones. The results show that

DeMiCPU can achieve 99.1% precision and recall on average, and

98.6% precision and recall for the 30 identical devices, with a finger-

printing time of 0.6 s . In addition, the performance can be further

improved to 99.9% with multi-round fingerprinting.

CCS CONCEPTS

• Security and privacy → Security services.

KEYWORDS

Device Fingerprinting; Electromagnetic Radiation; CPU; Smart De-

vices.

ACM Reference Format:

Yushi Cheng, Xiaoyu Ji, Juchuan Zhang, Wenyuan Xu, and Yi-Chao Chen.

2019. DeMiCPU: Device Fingerprinting with Magnetic Signals Radiated by

CPU. In 2019 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’19), November 11–15, 2019, London, United Kingdom. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3319535.3339810

∗Corresponding faculty author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3339810

Access
Denied

DeMiCPU Sensor

DeMiCPU Server

Access
Permitted

Authorized
Device

Unauthorized
Device

DeMiCPU Sensor

CPU MI Signal

Open
 XXX file

Open
 XXX file

Figure 1: Based on CPU fingerprints, DeMiCPU provides the

ability to fingerprint devices for software and applications.

1 INTRODUCTION

Mobile devices have emerged as the most popular platforms to

assist daily activities and exchange information over the Internet.

According to Gartner [16], there are more than 11 billion phones,

tablets and laptops by the end of 2018. Along with the rapid growth

is the rising demand of device authentication: it is useful for applica-

tions to recognize whether they are executing on the same device

as the previously registered one, e.g., during payments, to ensure

the safety of personal privacy or cyber assets.

One of the strategies for device authentication is device finger-

printing. Existing device fingerprinting solutions are mainly based

on internal device information (e.g., IMEI (device ID), serial num-

bers of laptops), or built out of software or hardware characteristics.

Software-based fingerprints utilize wireless traffic patterns [33],

browser properties [46], and etc., while hardware-based finger-

prints utilize hardware characteristics such as clock skews [26, 34],

accelerometers [13], gyroscopes [2], microphones [11], cameras [14,

29], and Bluetooth implementation [1].

In this paper, we propose to fingerprint devices exploiting the fea-

tured electromagnetic interference (EMI) signals radiated by CPU

modules on devices, which we call CPU fingerprints. The advantage

of such a CPU fingerprint is that it can be measured externally

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1149

rather than internally by the operating system (OS), which could be

a useful feature for applications on external devices to authenticate

the devices. In addition, a CPU module is indispensable for almost

all mobile or smart devices, and thus the CPU fingerprint is likely

to be more universal compared with aforementioned built-in sensor

based approaches.

Based on it, we design DeMiCPU, a device fingerprinting scheme

consisting of a trusted DeMiCPU server, a stimulation program on the

target device, and a trusted stand-alone DeMiCPU capturing module

with a built-in magnetic sensor (in short DeMiCPU sensor), as shown

in Fig. 1, and it works as follows. Once an application requests for

device fingerprinting, DeMiCPU starts the stimulation program, and

the DeMiCPU sensor measures and packages the measurements with

protection and uploads the packaged measurements to the DeMiCPU
server for fingerprint matching. An attacker may try to impersonate

a target device by emulating the EMI radiated by its CPU module,

but it is almost impossible to produce an EMI pattern close enough

to that of the target device, as analyzed in Sec. 7.

DeMiCPU is promising yet challenging. First, EMI spans a wide

spectrum, including high frequency that may produce data at the

rate ofGbps . Such computation and communication costs are unac-

ceptable, especially for the DeMiCPU sensor. Second, all electronic

components inside a device emit EMI and their operation status

affects the level of EMI. It is difficult, if ever possible, to control

the status of each component across various attempts of measure-

ment. Besides, it is unclear whether the EMI radiated from the same

device at various time instants or locations is consistent and the

ones from different devices are distinct. Last but not least, the EMI

radiation may contain a large amount of noise and how to extract

fingerprints efficiently out of the noisy EMI radiation is nontrivial.

This paper addresses aforementioned challenges and validates the

feasibility of CPU fingerprint.

Which frequency to measure and how to measure? After careful

analysis and experimental validation, we choose low-frequency

magnetic induction (MI) signals (< 100 kHz). EMI generated by

electronic components includes both electromagnetic radiation

(EMR) in the far field (> two wavelengths) and magnetic induction

(MI) in the near field (< a wavelength). Since EMR is the main

cause that affects interoperability of devices, it is suppressed for

electromagnetic compatibility [18]. YetMI signals dominate the near

field and do not propagate as far as EMR. Being less a concern of

interference, MI signals are not intentionally suppressed and serve

as an excellent candidate for extracting hardware fingerprints.

How to induce consistent MI? It is almost impossible to control

the status of each component, and thus we focus on controlling

the one that emits the majority of MI signals, i.e., the CPU mod-

ule that consists of the CPU chip and its affiliated power supply

circuits. In this way, MI signals contributed by other components

on the motherboard can be neglected. CPU fingerprints are made

possible because even for devices of the same model, CPU mod-

ules are discrepant due to hardware diversities introduced during

the manufacturing process. However, various applications may

lead to various MI signals of the CPU module (as our experiments

confirmed). To ensure that the CPU load and operation status are

similar across measurements, we analyze the cause and influencing

factors of the emitted MI signals and design a set of instructions

Figure 2: An illustration of a simplified CPU module. A

DC/DC converter is connected to the CPU chip for voltage

conversion. The inductor in the DC/DC converter can pro-

duce strong MI signals when large currents flow through it.

to generate an identical 100% utilization stimulation to the CPU

module.

How to extract fingerprints despite of noise? To distinguish the

subtle discrepancies of CPU modules when the measurement of MI

signals could be noisy, we remove the effects of the geomagnetic

field and environmental noise in the pre-processing phase before

extracting a set of 15 carefully-selected features, which serves as the

fingerprint of the device. To further ensure high accuracy, reliability

and usability in DeMiCPU, we compare 10 common classifiers to

elect the appropriate classification algorithm. In summary, our

contribution includes the following:

• We propose to fingerprint mobile devices by monitoring

the MI signals emitted from the CPU module. To the best

of our knowledge, this is the first work to attempt device

fingerprinting based on the fingerprints of CPU modules.

• We design an efficient MI-based fingerprinting scheme con-

sisting of identical stimulation generation, effective feature

extraction and valid fingerprint matching, which can identify

devices reliably and accurately.

• We validate DeMiCPU on 90 mobile devices, including 70 lap-

tops and 20 smartphones. The results show that DeMiCPU
can achieve 99.1% precision and recall on average, and 98.6%

precision and recall for 30 identical devices, with a finger-

printing time of 0.6 s . Both precision and recall can be further

improved to 99.9% with multi-round fingerprinting.

2 BACKGROUND

2.1 Magnetic Induction of Electronic Devices

All electronic components emit electromagnetic interference (EMI)

when currents flow. EMI emitted from electronic components (e.g.,

CPUs, fans, GPUs) includes two types: high-frequency electromag-

netic radiation (EMR) signals and low-frequency magnetic induc-

tion (MI) signals. EMR refers to electromagnetic waves that are

synchronized oscillations of electric and magnetic fields and propa-

gate at the speed of light. High-frequency EMR waves are mainly

at an order of MHz or above, and are always effectively reduced

or shielded [18] to eliminate interference with other electronic

components or devices. By contrast, MI signals are non-radiative

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1150

waves generated by currents and are typically not intentionally

suppressed. In addition, MI signals have a relatively larger strength

and a lower frequency than EMR, and thus can be measured by

low-frequency magnetic sensors. Therefore, MI signals are good

representatives of EMI emitted from a device.

2.2 The CPU Module

The CPU module of a device refers to the CPU chip and its affili-

ated DC/DC converter. The computation-intensive nature of the

CPU chip draws heavy currents from the DC/DC converter, which

generate strong MI signals.

CPU. A CPU chip consists of hundreds of millions of CMOS

(complementary metal oxide semiconductor) transistors arranged

in a lattice form, which performs basic arithmetic, logical, control

and input/output (I/O) operations. The CPU current depends on

the power consumption of the CMOS circuits, which has three

components: static power dissipation, short-circuit power dissipa-

tion, and dynamic power dissipation, mathematically denoted as

follows [38]:

Pcmos = Pstatic + Pshor t−circuit + Pdynamic (1)

Pstatic , a.k.a., leakage power dissipation, is a steady and constant

energy cost caused by the leakage currents of transistors. Pshor t−circuit
arises when two transistors in a CMOS gate are on at the same time,

which creates a short circuit from the voltage supply to the ground

and thus consumes energy. Pdynamic is caused by the switching of

CMOS gates. Energy consumption of a CPU mainly depends on the

dynamic power dissipation of the CMOS lattice, which is roughly

equal to the energy change in the output capacitance of CMOS

transistors. Average power consumption of a multi-core CPU can

be modeled as follows [39]:

Pavд =
N∑

i=1

CiV (α)
2AF (α)

2
(2)

where N is the number of CPU cores.Ci ,A,V and F are influencing

factors, with their meanings summarized in Tab. 1. V and F are

further related to the CPU load α due to the power-management

technique DVFS (dynamic voltage and frequency scaling) [28] ap-

plied by modern devices. DVFS decreases the clock frequency and

allows a corresponding reduction in the supply voltage for energy

saving. For example, for a ThinkPad T440p laptop, V and F are

0.899 V and 3095.95 MHz when the CPU load is 100%, and they

drop to 0.668V and 798.95MHz when the CPU becomes idle (2−3%

load on average). As all the four factors are hardware related and

CMOS circuits are various across CPUs, those factors are distinct

from device to device (detailed in Sec. 2.3).

In this section, we begin with the principle of magnetic signals,

then elaborate how CPU modules can produce magnetic signals,

and finally explain why magnetic signals from CPU modules are

differentiated in nature.

DC/DC converter. Due to the difference of voltage levels be-

tween the CPU and the power supply system (either a battery or an

external power source), a DC/DC converter is placed close to the

CPU chip to convert a high voltage to a low one [10]. In Fig. 2, we

show the key components of a DC/DC converter and its relation-

ship with the CPU chip. In principle, the high-frequency switch

(a) Heatmap of MI signals from T440p. (b) Physical structure of T440p.

Figure 3: Investigation ofMI signals emitted from the T440p

laptop. (a) The heatmap of measured MI signal strength. (b)

Physical structure of the laptop.

in the DC/DC converter works in a duty-cycle mode to generate a

lower voltage. Electronic components including the capacitors, in-

ductors, and diodes are utilized to make the output voltage smooth

and continuous. The regulated voltage and currents are then fed

into the CPU chip to satisfy its computation requirements.

In short, CPU chips nowadays exploit a reduced voltage for en-

ergy efficiency, but incur heavy currentswhen performing computation-

intensive tasks. The heavy currents flowing through the CPU mod-

ule generate strong MI signals, which are further amplified by the

inductor inside the DC/DC converter, due to the effect of coils.

2.3 CPU Module Discrepancy

Hardware discrepancies exist among devices, or more precisely,

their CPU modules. For CPUs of various models, all the four fac-

tors Ci , V , A and F that affect the CPU power consumption, can

be different due to the discrepancies in hardware structure and

specification. Even for CPUs of the same model, e.g., Intel Core

i5-3210M for ThinkPad T440p laptops, discrepancies exist due to

the imperfections introduced during the manufacturing process.

As shown in Tab. 1, manufacture techniques have influence upon

three factorsCi ,V , and F , i.e., the transistor sizes, working voltages,

and working frequencies of CPU chips can be distinct. Besides,

the DC/DC converter of the CPU module further enlarges the dif-

ferences. Therefore, MI signals from CPU modules of the same

or various models are distinct due to the hardware discrepancies

across devices.

In summary, MI signals fromCPUmodules are different in nature

and can serve as a candidate of device fingerprints. In addition, CPU

load α affects MI signals since it influencesV and F . As a result, MI

signals can be strengthened by increasing the CPU load. Thus, to

maintain a stable observation of MI signals, the CPU load shall be

accurately controlled.

Table 1: Impact factors of CPU power consumption.

Pavд
Factors

Meaning
H α

Ci �
CMOS capacitance, related to

the transistor size and the wire length

V � � Supply voltage to CPU

A � Average switching frequency of transistors

F � � Clock frequency

H: Hardware related. α : CPU load.

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1151

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

t(s)

B(
uT

)

100% idle

Figure 4: MI signal is highly

related to the CPU working

period.

100 101 102 103 104 105

Frequency(Hz)

0

1500

3000

4500

6000

Am
pl

itu
de

T440p-1, CPU(T440p-1)
T440p-1, CPU(T440p-2)
T440p-2, CPU(T440p-2)
T440p-2, CPU(T440p-1)

Figure 5: Histograms of MI

signals before and after ex-

changing CPUs.

100 101 102 103 104 1050

1500

3000

4500

6000

Frequency(Hz)

Am
pl

itu
de

Instant−1
Instant−2
Instant−3
Instant−4
Instant−5

Figure 6: Histograms of MI

signals at five instants.

100 101 102 103 104 1050

1500

3000

4500

6000

Frequency(Hz)

Am
pl

itu
de

Location−1
Location−2
Location−3

Figure 7: Histograms of MI

signals at three locations.

3 PRELIMINARY ANALYSIS

In this section, we verify the feasibility of CPU fingerprints em-

pirically. As shown in Fig. 10, we collect MI signals emitted from

the CPU models with a magnetic-field sensor DRV425 [22] from

Texas Instruments (TI), and conduct AD conversion with a data

acquisition (DAQ) card U2541A [25] from Keysight at a sampling

rate of 200 kHz. Each collection lasts for 1 s (0.5 s is shown to be

sufficient to fingerprint a device in Sec. 6).

3.1 MI Signals from CPU Module

Does the CPU module produce the strongest MI? To verify

whether the CPU module emits the strongest MI signals among

all components, we execute a while(1) loop (in C++) to generate

a CPU utilization of 100%, and measure the MI signal strength by

placing the sensor on various spots (33 spots in total) of a Lenovo

ThinkPad T440p laptop’s surface (device No. 31 in Tab. 3). We plot

the heatmap of the MI signals measured across the laptop’s surface

in Fig. 3(a), from which we can find that the strongest MI signals are

observed at “S” and “D” keys. Dismantling the laptop reveals that

two inductors of the DC/DC converter that powers the CPU chip

are located right below these two keys, as shown in Fig. 3(b). This

indicates that the CPU module, specifically the DC/DC converter,

produces the strongest MI signals when the CPU is under a high

load.

Does the CPU load affect the MI Signals? To understand

whether the variation of the CPU load affects MI signals emitted

from the CPU module, we force the CPU to work in a duty-cycle

mode at a frequency of 5 Hz, i.e., alternating between a 100% uti-

lization and an idle mode at an interval of 100ms . Throughout the
experiments, the sensor was placed above the CPU module, i.e., on

S and D keys, to measure the emitted MI signals. The results shown

in Fig. 4 confirm that the CPU load does affect the MI signals. Thus,

it is important to create a consistent software stimulation to ensure

the same CPU load such that the fingerprints generated from the

CPU module are consistent for the same device.

Do other components affect the MI Signals? Modifying the

status of other computer components may lead to variation of the

MI signals. However, MI signals generated by others attenuate

rapidly with distance due to the near field effect. We observe no

noticeable difference between the MI signals collected right above

the CPU module when the fan was turned on and off. As a re-

sult, DeMiCPU does not control other components during device

fingerprinting.

100 101 102 103 104 105

Frequency(Hz)

0

1500

3000

4500

6000

Am
pl

itu
de

T440p-1
T440p-2
XPS13
R720
XPS14

Figure 8: Histograms of MI signals from 5 laptops. Even for

the two laptops of the samemodel, i.e., T440p-1 and T440p-2,

the MI signals show discrepancies.

3.2 Evidence of CPU Fingerprint

To explore the existence of CPU fingerprint, we conduct an ex-

periment with 5 laptops, which are two Lenovo ThinkPad T440p

(T440p-1 and T440p-2, for short), Dell XPS 13, Lenovo R720, and

Dell XPS 14. Detailed specifications of these laptops (Device No. 31,

No. 32, No. 61, No. 49 and No. 62) are summarized in Tab. 3, among

which two laptops (T440p-1 and T440p-2) are from the same model

and installed with the same operating system and the rest are of

different models.

We execute the while(1) program to keep the CPU at a 100%

utilization and measure MI signals above the CPU module of each

laptop. We then perform Fast Fourier Transform (FFT) on the col-

lected MI signals and plot their one-dimensional histograms in

Fig. 8, with a logarithmic bin size of 100.1. The histogram repre-

sents the frequency distribution of the MI signals, from which we

can observe distinct “patterns” for the 5 laptops in the frequency

range from 20 Hz to 10 kHz. Especially, laptops of different models

show more discrepancies compared with those of the same model.

Nevertheless, the two T440p laptops remain distinguishable even

only with one histogram feature.

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1152

The above findings shed light on the existence of CPU finger-

prints. However, to make the fingerprint robust and accurate, es-

pecially for devices from the same model, more features in both

time and frequency domains should be investigated to enhance the

fingerprint.

3.3 What Contributes to CPU Fingerprint?

To understand whether the fingerprint is created by the CPU chip,

the DC/DC converter, or the combination of both, we exchange

the CPUs of the two T440p laptops and obtain two “new” laptops

(T440p-1 with CPU from T440p-2 and T440p-2 with CPU from

T440p-1). Similar to previous experiments, the CPU utilization is

set to 100% during collection and MI signals are measured above the

CPU module before and after swapping the CPUs. The results in

Fig. 5 show that MI signals for four configurations are all different,

which indicates that the fingerprint originates from the combination

of the CPU chip and its affiliated DC/DC converter, i.e., the CPU

module.

3.4 Temporal and Spatial Consistency

The MI signal from a device should be consistent across time and

space to serve as a robust fingerprint. To investigate the temporal

consistency, we collect 30 MI signals from the T440p-1 laptop at 5

time instants across two days, i.e., the first three instants are within

one day (morning, afternoon and evening) and the other two are

in the next day (morning and evening). The T440p-1 laptop is set

to 100% utilization and one-second MI signals are collected each

time. The results depicted in Fig. 6 indicate that MI signals remain

consistent regardless of time.

To investigate the spatial consistency, we collect 30 MI signals

from the T440p-1 laptop at 3 locations (one in a lab, two at home;

and the two places are about 3 kilometers apart). Note that we

do not intentionally avoid or remove metal and magnetic materi-

als around the collecting device during experiments. As a result,

due to the impact of the earth’s magnetic field and ambient noise

(especially in the lab, with numerous electronic devices surround-

ing), the initial magnetic magnitude of the sensor is geo-spatial

dependent. However, the strength of the earth’s magnetic field and

ambient noise is relatively static at a specific spot and thus mainly

contributes to the constant part of the collected MI signals. As a

result, the FFT operation shall have eliminated the impact of the

earth’s magnetic field as well as the ambient noise. The results in

Fig. 7 also validate that the frequency-domain MI signals remain

consistent regardless of locations.

All these experiments provide strong evidence that CPUmodules

can produce strong MI signals that maintain good distinguishability

and consistency, and the MI signals from CPU modules serve as

promising device fingerprints.

4 THREAT MODEL

In this paper, we have the following assumptions.

Impersonation. Although it is feasible for attackers to launch

a Denial-of-Service (DoS) attack by emitting EMI or even placing a

strong magnet close to the DeMiCPU sensor, the goal of the attackers

is to impersonate a legitimate device. Thus, we focus on replay or

mimic attacks.

0 0.1 0.2 0.3 0.4 0.5 0.6
−30

−15

0

15

t(s)

B(
uT

)

Preamble

Figure 9: Structure of the MI signal, including a 0.1 s pream-

ble and a 0.5 s fingerprinting sample.

Acquisition of Similar Device. We assume the adversary can

obtain similar devices as the target one, e.g., a device of the same

model, to imitate the target device and have full control of them.

Secure Communication. We assume that the communication

between the DeMiCPU sensor and the DeMiCPU server and between

the server and the software (application) is secure. For instance,

DeMiCPU can package the MI measurements or matching results

with encryption, by the well-known secure communication pro-

tocols [3, 31, 32]. As a result, the attacker cannot create forged

measurements or modify the measurements/matching results.

5 DESIGN

In this section, we describe the 3 sub-modules of the overall DeMiCPU
system: (1) Fingerprint generation; (2) Fingerprint extraction; (3)

Fingerprint matching.

5.1 DeMiCPU Fingerprint Generation

To obtain MI measurements that produce consistent fingerprints, it

is important to solve the following two challenges.

• How to stimulate the CPU such that it generates the MI

signal that can produce a consistent device fingerprint?

• How to collect and identify the MI signal segment that maps

to the one under stimulation even if an attacker may disturb

the communication between the stimulation program and

the trusted capturing sensor?

To address these two challenges, we design the stimulation program

such that it produces theMI signal trace in Fig. 9, which is composed

of a preamble and a fingerprinting signal that are both generated

by controlling the CPU load in a proactive way. As thus, DeMiCPU
only needs to transmit a signal as short as 0.6 s for fingerprinting.

5.1.1 Preamble. To identify the MI signal segment that is under

stimulation, a preamble is used for the trusted capturing sensor to

detect the start of the fingerprinting signal. DeMiCPU stimulates the

device such that a unique MI pattern is generated as a preamble,

thereby allowing the sensor to identify it with cross-correlation. We

realize the preamble by manipulating the CPU load and generate a

sequence of [1,0,1,0] (“1” for full-utilization mode and “0” for idle

mode) as shown in Fig. 9, which lasts for 100ms in total.

5.1.2 Stimulating CPU. The strength of the MI signals emitted

from the CPU module depends on the current, which is related to

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1153

the CPU load. In order to obtain stable MI signals to produce CPU

fingerprints, we stimulate the CPU by controlling its utilization

ratio. Without loss of generality, the total CPU utilization is the

sum of CPU utilization from all running processes, including both

system and user processes, which can be modeled as follows:

CPU _util = Sys_processes +User_processes (3)

Utilization Ratio. One intuitive question is what utilization

ratio to use, 100%, 50%, or other values? In fact, it is difficult to

precisely control the utilization since 1) it is hard to accurately

restrict system and user processes to a certain level, and 2) the CPU

scheduling policy further worsens the problem. For instance, 50%

CPU utilization means that the CPU works in 5 clock cycles and

is idle in the remaining 5. Without inspecting and modifying the

scheduling algorithm, it is almost impossible to ensure that the

CPU behaves the same in all clock cycles.

To address it, we choose to keep the CPU running in the full-

utilization (100%) mode to obtain an identical output. Another ben-

efit of such an implementation is that higher CPU utilization gen-

erates stronger MI signals, which helps to lighten the impact of

ambient noise. We achieve the full-utilization mode by invoking

CPU-consuming instructions, such as while(1) in our implemen-

tation. As thus, system processes, DeMiCPU stimulation process, and

other user processes together compose the 100% utilization.

DeMiCPU Priority. During fingerprinting, however, other user

processes, i.e., background applications, are not likely to be the same,

which may render the stimulation nonidentical. To eliminate the

influence of other user processes, we assign a superior priority to

the DeMiCPU stimulation program, which is higher than the base one

of other user processes yet lower than that of the system processes

since they only account for 1-2% CPU utilization on average.

Mainstream operating systems such asWindows, Linux, andMac

OS X, are all able to support such an implementation. For instance,

Windows implements a priority-driven, preemptive scheduling sys-

tem, where the highest priority runnable threads are executed first.

Each thread, which is the smallest unit of program execution flow,

has a base priority as a function of its process priority class and

relative thread priority. Normally, user applications and services

start with a base priority level 8, i.e., both process and thread pri-

orities are normal [37]. Thus, we shall at least assign the DeMiCPU
stimulation program with a priority level higher than that.

In particular, we examine the highest priority of the user threads,

which is usually a priority level 8 as mentioned before. Then, we

assign a higher priority to the DeMiCPU thread, e.g., a normal pro-

cess priority but an above normal thread priority, i.e., a priority

level 9, to eliminate the impact of other user processes. In addition,

since modern CPU chips support multi-core and multi-thread, we

bind a stimulation thread to each available logical processor core,

including the virtual ones created by Hyper-Threading [30]. As

thus, the CPU utilization under stimulation is as follows:

CPU _util_stimu = Sys_processes + DeMiCPU = 100% (4)

Feedback. In general, such a design is able to generate an iden-

tical stimulation. However, in a rare case, a thread with a higher

priority may be launched during fingerprinting, making the stimu-

lation different than planned. To further guarantee the validity of

the DeMiCPU stimulation, we introduce a feedback mechanism, i.e.,

Algorithm 1: DeMiCPU Stimulation

1 CPU _Frequency ← Get_Current_CPU_Freqency()

2 if CPU _Frequency > threshold_1 then
3 C_priority ← Get_Current_Highest_Priority()

4 //get the highest priority level of running user threads

5 DeMiCPU _priority ← Gen_Priority(C_priority)

6 cpunum← Get_CPU_Core_Num()

7 // get the number of CPU logical processors

8 for i ∈ ranдe(1, cpunum) do
9 hThread(i) ← CreateThread()

10 // create the ith DeMiCPU stimulating thread

11 SetThreadPriority(hThread(i), DeMiCPU _priority)

// set the ith DeMiCPU stimulating thread with the

generated DeMiCPU priority level

12 C_Thread ← GetCurrentThread ()

13 C_Mask = 0x0001 ∗ 2i−1

14 SetThreadAffinityMask (C_Thread , C_Mask)

15 // bind the ith DeMiCPU stimulating thread to the ith

CPU logical processor

16 preamble_gen()

17 fingerprinting_signal_gen()

18 Stim_Util ← Get_Util_Feedback()

19 Stim_Freq ← Get_Freq_Feedback()

20 if Stim_Util < threshold_2 then
21 DeMiCPU Stimulation

22 if Stim_Freq < threshold_1 then
23 sleep(5)

24 DeMiCPU Stimulation

25 else

26 sleep(5)

27 DeMiCPU Stimulation

examining system logs after stimulation to confirm that DeMiCPU
exclusively uses the CPU during fingerprinting. If not, DeMiCPU
abandons the current measurements and triggers a second collec-

tion. Moreover, the CPU frequency may drop due to a high CPU

temperature or low battery. Thus, the feedback mechanism exam-

ines the CPU working frequency before and during stimulation. If a

previous or midway frequency drop is detected, DeMiCPU abandons

the current measurements and defers its collection till the CPU

recovers from the low frequency mode, as revealed in Algorithm 1.

In this way, we minimize the influence of software environment

and output stable fingerprinting signals as shown in Fig. 9.

5.2 DeMiCPU Fingerprint Extraction

5.2.1 Pre-processing. Preliminary analysis confirms the temporal

and spatial consistency of the MI signals in the frequency domain.

However, the time-domain MI signal is geo-spatial dependent due

to the impact of the earth’s magnetic field and ambient noise. As

the strength of the earth’s magnetic field and ambient noise is

relatively static at a specific spot, we assume it mainly contributes

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1154

to the constant part of the collected MI signals. To eliminate its

impact, we normalize the raw MI signal, i.e., the measured signal

in Fig. 9, before extracting features.

Denote the measured signal as B, we normalize B to obtain the

pre-processed MI signalM for feature extraction as follows:

M =
B −min(B)

max(B) −min(B)
(5)

Note that although the above solution is designed for scenarios

where ambient MI signals are relatively static, we argue it also

works with time-varying magnetic signals such as power frequency

interference from nearby electrical equipment, because that the

time-varying MI signals from other devices quickly attenuate and

thus have little influence.

5.2.2 Feature Selection. For each pre-processed signalM , we ex-

tract 30 scalar features from both time and frequency domains. We

exploit LibXtract [7], a lightweight feature extraction library for

time series, which can output a number of statistical feature can-

didates. Besides the features offered by LibXtract, we investigate

the physical meaning of the MI signal, and manually select fea-

tures, e.g., Spectrum Kurtosis and Spectrum Smoothness, on which

remarkable distinctions can be observed in Fig. 8.

To further determine critical features, we rank them with the

help of FEAST toolbox [6], which is a commonly used feature rank-

ing tool in machine learning. From the results, we obtain the top

15 features in time and frequency domains and construct a feature

set as: F ={Spectrum Roll Off, Spectrum Kurtosis, Average Deviation,

Spectrum Spread, Spectrum Smoothness, RMS Amplitude, Spectrum

Standard Deviation, Spectrum Irregularity-K, Spectrum Skewness,

Spectrum Flatness, Standard Deviation, Spectrum Irregularity-J, Mean,

Skewness, Spectrum Mean}. The orders in the set indicate their rank-

ing orders with Spectrum Roll Off giving the largest information

gain.

For a fingerprinting signal i from a device, hereafter we define

the feature set Fi as the fingerprint of the device.

5.3 DeMiCPU Fingerprint Matching

The DeMiCPU cloud server utilizes supervised learning to classify

each trace with the extracted feature set F. To select the appropriate

classification algorithm, we compare 10 commonly-used classifiers

and the detailed results can be found in Fig. 11(a). For the sake of

high classification accuracy and robustness over a single classifi-

cation algorithm, we employ an ensemble classification approach

ExtraTrees [19], which fits a number of randomized decision trees

on various sub-samples of the dataset and uses averaging to im-

prove prediction accuracy and avoid over-fitting.

Training. During the training process, for a specific device, k
traces from it are utilized as the positive class, and k traces from

each of the rest devices serve as the negative class to train a binary

classifier. Therefore, for j devices, j binary classifiers are trained in

total. In real-world deployment, we may need to extend the clas-

sification system when a new device comes and registers. Under

that circumstance, the feature sets of the new device are extracted

and trained to obtain a new binary classifier without the need of

retraining the original j classifiers. The new classifier is finally

Figure 10: Experimental setup. The magnetic sensor is verti-

cally placed on the surface of the target laptop for MI signal

collection.

incorporated with the existing classifiers to constitute a new classi-

fication system.

Matching. When matching, the server analyzes the fingerprint

signal from the device to be identified and extracts its feature set F.

Then, the server feeds it to the classifier of which class the device

claims to be, to verify its identity.

6 EVALUATION

To evaluate the performance of DeMiCPU, we have conducted ex-

periments with 70 laptops and 20 phones across 30 days, among

which 30 laptops are of the same model. The detailed information

of each device is shown in Tab. 3 (in Appendix A.1). In summary,

the performance of DeMiCPU is:

• DeMiCPU achieves 99.1% precision and recall for both laptops

and phones, and more than 98.6% precision and recall for

30 identical devices with one-round fingerprinting, and the

performance can be further improved to 99.9% with multi-

round fingerprinting.

• DeMiCPU can operate with little influence from operating

systems, background applications, fan on/off states or CPU

temperature.

• DeMiCPU supports low sampling rate which makes it a uni-

versal approach running on ubiquitous smart devices.

6.1 Experiment Setup

With the experiment setup described in Tab. 3 and Fig. 10, we collect

100 MI traces for each of the 90 devices and each trace lasts for

0.5 s (excluding the preamble). The settings for the laptops and

smartphones are as follows.

Stimulation Program Setup. We implement the stimulation

program in Algorithm 1 on five operating systems, i.e., Windows

(in C++), Linux (in C++), Mac OS (in Java), Android (in Java), and

iOS (in C++), to stimulate the CPU and generate a fingerprinting

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1155

1 2 3 4 5 6 7 8 9 10
Classifier Number

0.6

0.7

0.8

0.9

1

Pe
rfo

rm
an

ce

Precision Recall F1-Score

(a) Performance of 10 common classifiers.

Win7 Win8 Win10 Linux
Training OS

0.6

0.7

0.8

0.9

1

F1
-S

co
re

Win 7 Win 8 Win 10 Linux

(b) Impact of OSs.

1 2 3 4 5
Application

0.6

0.7

0.8

0.9

1

Pe
rfo

rm
an

ce

Precision Recall F1-Score

(c) Impact of background applications.

1 2 3 4 5 6 7 8 9 10
Position Offset (mm)

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rfo

rm
an

ce

Precision Recall F1-Score

(d) Impact of test point offset.

Figure 11: Micro-benchmark evaluation results of DeMiCPU on 5 randomly-chosen devices.

signal. The lightweight program is pre-installed on the experimental

laptops/ smartphones.

Data Collection Setup. We collect MI signals from the 90 de-

vices using a magnetic-field sensor DRV425 [22] from TI. As shown

in Fig. 10, the sensor is vertically placed on the surface of laptops or

phones (test points are shown in Tab. 3 in detail) since MI signals

emitted from the CPU modules are in the vertical direction. A data

acquisition (DAQ) card U2541A [25] from Keysight is utilized for

AD conversion with different sampling rates, e.g., 100 Hz, 200 Hz,
1 kHz, and etc. A data processing laptop connects with the DAQ

card through a USB, which locally stores and processes the collected

data.

6.2 Performance Metrics

Given an MI fingerprint from a device, DeMiCPU verifies whether

it belongs to the device (classifier) that it claims to be. For each

classifier i , we defineTPi as the true positives for classifier i , i.e., the
number of fingerprints that are correctly accepted as i . Similarly,

FNi and FPi refer to the number of fingerprints that are wrongly

rejected, and wrongly accepted as i , respectively. We define the

standard classification metrics for each classifier i as:

Precision(i) =
TPi

(TPi + FPi)
(6)

Recall(i) =
TPi

(TPi + FNi)
(7)

F1 − Score(i) =
2 × Pri × Rei
(Pri + Rei)

(8)

The final precision, recall and F1-Score for DeMiCPU are the av-

erage of the 90 classes.

6.3 Micro-benchmark Evaluation

In this subsection, we evaluate the impact of classifier choices,

operating systems, background applications, on/off states of fans,

temperatures and displacements of test points. Five devices from

Tab. 3 are randomly chosen for the micro-benchmark evaluation.

6.3.1 Classifier Choice. To select the appropriate classifier for

DeMiCPU, we compare 10 commonly-used supervised learning algo-

rithms. They are 1) Logistic Regression, 2) Gaussian Naive Bayes, 3)

K-Nearest Neighbors, 4) Linear Discriminant Analysis, 5) Quadratic

Discriminant Analysis, 6) Decision Tree, 7) Support Vector Machine,

8) ExtraTrees, 9) Random Forest, and 10) Gradient Boosting. We

employ the 10-fold cross validation to evaluate the classifier perfor-

mance, which can combine measures of fit and thus derive a more

accurate estimation for model prediction performance.

We randomly choose 30 traces from each device, feed them into

the classifiers and record the corresponding accuracy. The results

in Fig. 11(a) show that 6 out of 10 classifiers show an F1-score above

0.9, with the classifier 8) ExtraTrees, 9) Random Forest, and 10)

Gradient Boosting being the best 3 classifiers. Thus, we can assume

that the data possesses good property in terms of discrepancies, i.e.,

CPU fingerprints are able to discriminate devices. In the following

experiments, we employ ExtraTrees since 1) it shows the best accu-

racy, and 2) it’s an ensemble classification approach which achieves

better robustness over a single classification algorithm.

6.3.2 Operating Systems. A device may install different OSs during

its lifetime. To investigate whether OSs affect DeMiCPU, we install 4

OSs which are 1) Window 7 Home Basic 7601, 2) Kali Linux 2.0, 3)

Windows 8 Professional 9200, and 4) Windows 10 Enterprise 10240

on the experimental laptops, and conduct experiments under each

OS to investigate the impact of OSs. We train the classifier with

traces from one OS and test it under all the four OSs. The results in

Fig. 11(b) indicate that with the DeMiCPU stimulation program, the

same device can be successfully identified across different OSs with

precision, recall and F1-Score of 1. It confirms that with elaborately

designed stimulation, OS-associated processes only account for a

tiny portion of the CPU utilization during fingerprinting, which is

within the tolerance of DeMiCPU. Thus, we believe DeMiCPU finger-

print is independent on OSs.

6.3.3 Background Applications. DeMiCPU stimulation is designed

to be undisturbed by other user processes. To evaluate its perfor-

mance against background applications in practice, we conduct

experiments on each device with several daily-used applications.

They are 1) WeChat, 2) Microsoft Word, 3) Google Chrome, 4)

YouTube, and 5) MATLAB, with statistically increasing CPU utiliza-

tion when normally used. We train the classifier using traces with

no background application, and test it using traces with one of the

aforementioned background applications, respectively. The results

shown in Fig. 11(c) confirm that, background applications barely

have impact on the performance of DeMiCPU since it can preempt

the CPU even if user applications run.

6.3.4 Displacement of Test Point. Due to that all electronic compo-

nents inside a device emit MI signals, the measuring sensor may

capture MI signals from other components when moved away from

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1156

0.75 0.8 0.85 0.9 0.95 1
Precision

0

0.2

0.4

0.6

0.8

1

C
D

F

Training Trace Size: 10
Training Trace Size: 20
Training Trace Size: 30
Training Trace Size: 40

(a) Overall precision for laptops.

0.75 0.8 0.85 0.9 0.95 1
Recall

0

0.2

0.4

0.6

0.8

1

C
D

F

Training Trace Size: 10
Training Trace Size: 20
Training Trace Size: 30
Training Trace Size: 40

(b) Overall recall for laptops.

0.75 0.8 0.85 0.9 0.95 1
Precision

0

0.2

0.4

0.6

0.8

1

C
D

F

Training Trace Size: 10
Training Trace Size: 20
Training Trace Size: 30
Training Trace Size: 40

(c) Overall precision for smartphones.

0.75 0.8 0.85 0.9 0.95 1
Recall

0

0.2

0.4

0.6

0.8

1

C
D

F

Training Trace Size: 10
Training Trace Size: 20
Training Trace Size: 30
Training Trace Size: 40

(d) Overall recall for smartphones.

Figure 12: Overall performance of DeMiCPU with different training data sizes (10, 20, 30 and 40).

the CPU module. To investigate the impact of the test point dis-

placement, we vary the position of the sensor as follows: Starting

from the center of the original test point (depicted in terms of key

positions in Tab. 3), we gradually move the sensor with a step of

1mm in four directions: upwards, downwards, left and right. The

classifier is trained at the original test point, and tested at each

changed position. For each displacement, we average the preci-

sions, recalls and F1-scores in four directions, and show the final

results in Fig. 11(d). From the results, we can see that within an

offset of 8mm, DeMiCPU achieves a high accuracy (> 99%). That

is, a user can conduct DeMiCPU fingerprinting with a displacement

tolerance of around a key size, which is approximately 10 − 15mm
wide.

6.3.5 Fans. When fingerprinting a laptop, an electric fan aside the

CPU module emits MI signals as well. To investigate the impact

of fans, we collect 200 traces from each device with fan on and

off, i.e., 100 traces each. We train the classifier with the fan-on

traces and test it with the fan-off traces. The resulting F1-Score

is 1, indicating that MI signals from the fan have little influence.

We assume it is because that fans have much lower power (several

watts) compared with CPUs (tens of watts), and the large distance

(around 10 cm) between fan and CPU makes the MI signal from a

fan quickly attenuate.

6.3.6 Temperature. CPU temperature changes over time and load,

andmight be an influence factor for DeMiCPU. To investigate, we test

DeMiCPU under different CPU temperatures. Note that in DeMiCPU
stimulation, we introduce a CPU frequency check before stimula-

tion since the CPU protection mechanism will decrease the CPU

frequency when its temperature becomes too high, e.g., above 90 oC.

Thus, DeMiCPU normally works when the CPU temperature is not

too high to cause a frequency drop and we first test DeMiCPU under

this range. We train the classifier using traces collected when CPU

temperature is 65 oC, and test it under the cases of 43 oC, 52 oC,

60 oC, 68 oC, and 78 oC, respectively. The F1-Scores for the five

cases are all 1. To further explore the performance of DeMiCPU un-

der a high temperature, we manually turn off the CPU protection

mechanism and test the system under 90 oC. The resulting F1-score

is also 1, indicating that DeMiCPU works as well. Thus, we believe

DeMiCPU is robust to CPU temperature changes.

4.0%

4.0%
4.0% 5.0%

1.0%

4.0%
1.0%2.0%

1.0%

2.0%

2.0%
1.0%

Figure 13: Confusion matrix of 30 identical laptops.

6.4 Overall Performance

In the overall performance evaluation, 100 traces are collected from

each device in Tab. 3, and the employed classifier is ExtraTrees with

a tree number of 100.

6.4.1 Impact of Training Size. In the first set of experiments, we

train the system with x traces and test it with the rest 100 − x
traces (they are never used for training). x is set to 10, 20, 30, and 40

(correspond to 5, 10 ,15, and 20 seconds) respectively, to evaluate the

appropriate size of training data. We calculate the Precision(i) and
Recall(i) for each device (class) i , and plot their CDFs in Fig. 12(a)

- 12(d) with different training data size x . Even with 10 training

traces (correspond to 5 seconds), 90% of the precisions and recalls

are above 93.0% for all the laptops and smartphones. The average

precision and recall are 98.3% and 98.2% for the 70 laptops, and

99.4% and 99.3% for the 20 smartphones. With the increasing of

training data size, both precision and recall are improved. Given

the training size 20, DeMiCPU is able to achieve an average precision

and recall of 99.0% and 99.0% for the laptops, and 99.8% and 99.8%

for the smartphones. Besides, when the training data size further

increases, the performance of DeMiCPU approaches 100%. To strike

the balance between usability and accuracy, we choose 20 traces

for training, which only amount to 10 s . Training data size is then

set to 20 in the rest of the evaluation.

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1157

100 200 1K 5K 25K 100K 200K
Sampling Rate (Hz)

0.6

0.7

0.8

0.9

1

Pe
rfo

rm
an

ce

Precision Recall F1-Score

Figure 14: Impact of different sam-

pling rates.

True Negative Rate
0.8 0.85 0.9 0.95 1

C
D

F

0

0.2

0.4

0.6

0.8

1

Figure 15: Performance of DeMiCPU
against 5 random aliens.

0.9 0.92 0.94 0.96 0.98 1
Recall

0.9

0.92

0.94

0.96

0.98

1

Pr
ec

is
io

n

Laptop
Smartphone

Figure 16: Precision-recall curves for

laptops and smartphones.

6.4.2 Performance of Devices of Same Model. The reason why pre-

cision and recall behave better on smartphones is that there are

more devices of the same model for laptops. As a result, false posi-

tives and false negatives may occur. To take a close look, we plot a

confusion matrix for devices No. 1-30 (i.e., the 30 ThinkPad T430

laptops) in Fig. 13. These 30 laptops are of the same model and

installed with the same operating system, and thus are more likely

to be confused with each other. From the confusion matrix, we

can observe that device No.23 and No.24, as well as device No.25

and No.26 contribute a relatively lower accuracy, with the worst

precision of 91.6%. Nevertheless, DeMiCPU can still achieve an av-

erage precision of 98.7%, and an average recall of 98.6% for the 30

identical devices.

6.4.3 Impact of Sampling Rate. To investigate the sampling rate

requirement of DeMiCPU, we test the system by setting the sampling

rate to 100, 200, 1 k , 5 k , 25 k , 100 k , and 200 kHz respectively. 100

traces from each of the 90 devices are collected at each sampling

rate for training and testing. The resulting precisions and recalls are

shown in Fig. 14, from which we can observe that precisions and

recalls of DeMiCPU do not change significantly with lower sampling

rates. Especially, with a 1 kHz sampling rate, DeMiCPU achieves a

precision of 98.5% and a recall of 98.3%, which are nearly equivalent

to the results under higher sampling rates. Even with a 100 Hz
sampling rate, the precision and recall can be as high as 93.2%. This

finding is encouraging since it indicates that DeMiCPU can even use

ubiquitous smart devices with limited sampling rate capability for

fingerprint collection. For instance, most smartphones nowadays

are equipped with a built-in magnetometer that supports 100 Hz
sampling rate. Low requirement of sampling rate makes DeMiCPU a

more universal device fingerprinting mechanism.

6.4.4 Scalability of DeMiCPU. Although it’s difficult to evaluate the

capability of DeMiCPU with a very large set of devices, we conduct

several experiments in which we increase the number of tested

devices gradually to get a sense of how DeMiCPU scales. With the

same settings in the 90-device experiments, we change the total

number of tested devices and repeat the experiments. First, we

randomly choose and use 20 devices to obtain the precision and

recall of DeMiCPU. Then, we increase the quantity of devices to

30, 50, 70 and 90, and recalculate the precisions and recalls. Tab. 2

shows how accuracy changes with the increasing number of devices,

Table 2: Average precision, recall and F1-Score of DeMiCPU
with different numbers of tested devices.

Number of devices Precision Recall F1-Score

20 1.000 1.000 1.000

30 0.997 0.996 0.996

50 0.997 0.997 0.997

70 0.995 0.994 0.994

90 0.991 0.991 0.991

from which we can find that the performance of DeMiCPU does not

change significantly as the number of devices increases. It provides

encouraging signs that DeMiCPU is likely scalable to a large number

of devices.

6.4.5 Impact of Alien Devices. In real-world deployment, it is likely

that DeMiCPU needs to identify alien devices, i.e., devices that are

not trained beforehand. To understand how DeMiCPU performs with

alien devices, we conduct the following experiments. From the 90

devices, we randomly choose 85 devices for training and get the

corresponding 85 binary classifiers. The rest 5 devices, which serve

as aliens to the trained system (they are never used for training),

are utilized to test the performance. The 5 devices take turns to

input their traces to each of the 85 classifiers to see if they can be

accepted. We repeat the experiment for 10 times to eliminate the

random errors and plot the CDF of true negative rates in Fig. 15.

The results reveal that DeMiCPU can successfully reject alien devices

with a minimum probability of 98.2% and an average probability of

98.7%, which indicates its high reliability.

6.4.6 Multi-round Fingerprinting. In aforementioned evaluation,

the threshold for each binary classifier is 0.5 by default. However,

in practice, precision is likely to be prior to recall for the sake of

high reliability and security, and recall can be further improved

through multi-round fingerprinting.

To investigate the appropriate threshold to achieve high preci-

sion and the minimum fingerprinting round to achieve high recall,

we plot the precision-recall curve by varying the threshold for each

classifier. As DeMiCPU is a system consisting of multiple binary clas-

sifiers, we employ the same threshold in each classifier and average

their precisions and recalls as the final performance. The results

shown in Fig. 16 reveal that, for both laptops and smartphones, the

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1158

Figure 17: DIY replay attack equipment with a handcrafted

induction coil. The recorded MI sample is emitted by the

MSP430 in the form of discrete voltages, which are first con-

verted into analog signals by a Digital-to-Analog Converter

(DAC) and then converted into corresponding current sig-

nals by a Voltage-to-Current Converter (VCC).

precision approaches 100% when the threshold increases. Specif-

ically, for laptops, the recall is 97.0% when the precision is 99.9%

with a threshold of 0.54, which can be further improved to 99.9%

with two-round fingerprinting and 99.99% with three-round fin-

gerprinting. Similarly, for smartphones, the recall is 98.3% when

the precision is 99.9% with a threshold of 0.64, and the recall can

approach 99.999% with only three-round fingerprinting. Therefore,

with three-round fingerprinting, DeMiCPU can achieve a 99.9% pre-

cision and an over 99.99% recall on both laptops and smartphones.

To summarize, our evaluation with 90 laptops and smartphones

shows that smart devices can be identified leveraging the finger-

prints of their CPU modules. While even a larger study is needed

to confirm the scalability of our findings, to the best of our knowl-

edge, this is the first work to attempt device fingerprinting based

on fingerprints of CPU modules.

7 DISCUSSION

In this section, we conduct the security analysis and discuss the

limitations of DeMiCPU.

7.1 Security Analysis

Since the goal of the attackers is to impersonate a legitimate device,

we discuss two attacks: replay attacks and mimicry attacks. To

launch a replay attack, an adversary may have a brief physical

access to the target device. She may record the MI signal of the

target device and replay the recorded sample to fool the DeMiCPU
sensor. For mimicry attacks, she may find a similar device to imitate

the legitimate one.

7.1.1 Replay Attack. A replay attack consists of two steps: record-

ing and reproducing. We study the feasibility of such attacks based

on two sets of equipment: commercial off-the-shelf (COTS) devices

and DIY sets with handcrafted coils.

COTS device. The effectiveness of recording and emitting radia-

tion signals is determined by the sensitivity of the sampling devices

and the gain of the antennas. Much work has demonstrated the

feasibility of replaying radio frequency (RF) signals at reasonable

cost, e.g., utilizing a Universal Software Radio Peripheral (USRP)

with a matching antenna to replay signals at 2.4 or 5GHz for Wi-Fi,

900 MHz for GSM (Global System for Mobile Communications),

13.56 MHz for NFC (Near-field Communication), and etc. These

RF bands are at least at the order ofMHz and a variety of off-the-

shelf matching antennas are available. In comparison, the effective

frequency range of DeMiCPU is below 10 kHz, whose matching an-

tennas, i.e., VLF (very low frequency) antennas, are usually used

for military communication with submarines and few commodity

antennas are available. Moreover, VLF antennas are typically large,

e.g., a dipole antenna for 10 kHz can be longer than 7.5 km.

Without matching antennas, we may refer to dedicated equip-

ment to record MI samples. For instance, we found a N9038A MXE

EMI receiver from Keysight that can analyze signals from 3Hz to 44

GHz at the cost of $90, 000 USD. However, we were unable to find

equipment that can reproduce the recorded samples with abundant

signals ranging from DC to 10 kHz since most RF generators on

the market only support frequency higher than 9 kHz.
DIY set with handcrafted coils. Unable to replay MI signals

with COTS devices, we design our own replay equipment:We record

the MI sample with the DRV425 magnetic sensor and replay the

signal with a handcrafted induction coil driven by a MSP430F5529

LaunchPad [23], as shown in Fig. 17. We program the LaunchPad

to output the recorded MI sample in a form of discrete voltages,

which are then converted into analog signals by a Digital-to-Analog

Converter (DAC). The analog voltage signals are further converted

into corresponding current signals to drive the induction coil. A

ferrite core is inserted into the coil to augment its permeability. A

Constant Voltage Source (CVS) is utilized to power the VCC, and

an oscilloscope is used to monitor the output voltage of the DAC.

To quantify the MI signals measured by sensors, we refer to

the Ampere’s circuital law [45], which models the magnetic flux

generated by a charged coil as follows:

ΦB = μNIScosθ (9)

where μ is the magnetic permeability of the coil, N is the number

of turns, I is the current flowing through the coil, S is the area of

the magnetic sensor’s sensing surface, and θ is the angle between

the magnetic field lines and the normal line (perpendicular) to S .
Therefore, although we elaborately reproduce the MI signal, the

distance and angle between the coil and sensor affect the measure-

ment. Given the dynamic nature of the produced magnetic field and

the noise introduced during DA conversion, it is extremely difficult

for the sensor to record MI signals that equal the recorded one.

To validate, we randomly choose five samples from five devices,

and obtain 10 replayed samples for each. Although we try our best

to obtain a similar replayed signal, none of them matches with the

enrolled fingerprints. We believe that is because the fingerprint dis-

crepancy caused by the CPU hardware is subtle and the differences

as well as noises introduced during the replay attack is likely to

ruin such subtle characteristics. Thus, replay attacks targeted at

DeMiCPU are challenging to perform even at a single point and the

difficulty will increase dramatically with the increasing of testing

sensors.

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1159

7.1.2 Mimicry Attack. The mimicry attack utilizes a similar device

to imitate the target device by manipulating the software or config-

urations of the attack device. To impersonate the target device, the

attack device has to precisely learn and mimic the fingerprint of

the victim. However, the essential discrepancies of DeMiCPU finger-

prints originate from the hardware of CPU modules. Manipulating

software or configurations may alter the CPU fingerprint but the

mapping between the configurations and the fingerprint is difficult

to profile. As a result, the mimicry is likely to be unsupervised. In

addition, according to our observations, the fingerprint discrepancy

caused by the hardware of the CPU module is subtler compared

with that caused by configurations. Thus, mimicry attack is not

likely to make the attack device’s fingerprint exactly the same as

the one of the target device.

In summary, given the low frequency nature and the high preci-

sion of DeMiCPU, we believe it is difficult for adversaries to launch

either a replay attack or a mimicry attack against DeMiCPU.

7.2 Limitation

Authentication Point. DeMiCPU that relies on one sensor requires

the test point within a 16mm range, which may affect the usability.

A significant displacement of the DeMiCPU sensor from the CPU

modulemay lead to failure in identification. However, we envision it

can be addressed by exploiting a sensor array, which shall effectively

reduce the requirement of test points and enlarge the fingerprinting

area.

Long-term Consistency. We conducted our experiments over

30 days. However, a smart device usually can be used for years and

it may experience changes due to aging, which in turn may change

the features gradually. For example, the number of available CMOS

transistors in the CPU may decrease due to the hardware aging.

Nevertheless, we assume that we can compensate the aging by

postulating a fingerprint slow updating technique: We update the

fingerprints in the database occasionally if the current fingerprint

is still classified to the legitimate user yet a small constant offset is

detected, such that slow changes can be compensated.

User Process Suppress. DeMiCPU employs a higher priority

for stimulation compared with other user processes. As a result,

other user applications will be suppressed during fingerprinting.

However, as DeMiCPU stimulation only lasts for 0.6 s, we argue it

is relatively short and might be acceptable for most applications

without affecting user experience.

Firmware-updateResistance.The firmware andCPUmicrocode

of a smart device can be updated in accordance with requirements.

During our experiments, the devices were kept natural and haven’t

been updated intentionally. As the firmware and CPU microcode

may affect the execution of CPU instructions, they may have impact

on DeMiCPU fingerprinting. We remain it as the future work.

8 RELATEDWORK

Device Fingerprinting. Fingerprint is one of the most common

biometrics in user identification [24, 35]. The same concept was

extended to device identification by the US government in 1960s

to identify and track unique mobile transmitters [27]. Since then,

much effort has been devoted to identifying network devices by

building a fingerprint out of their software or hardware. In terms of

software-based fingerprint, the combination of chipsets, firmware

and device drivers [15], timing interval of probe request frames [12],

patterns of wireless traffic [33], and browser properties [46], can

be used to identify devices. The downside of these methods is that

fingerprints will change once device configuration or user behavior

changes. Hardware-based approaches fingerprint a device through

their physical components or properties. Clock skews [26, 34], radio

frequency (RF) discrepancy at the waveform [20, 36, 41] or modula-

tion [5] levels are well explored to identify wireless devices such as

Wi-Fi routers. Mobile device fingerprinting utilizes the difference in

hardware compositions [34, 40] or components such as accelerom-

eters [13, 42], gyroscopes [2], microphones [11, 48], speakers [47],

cameras [14, 29], Bluetooth implementation [1], or some of them

in combination [4, 21]. The advantage of hardware-based device

fingerprinting is that fingerprints are generated essentially from

manufacture discrepancies, which can remain stable during the

lifecycle of the device and are difficult to mimic.

EMI Leakage Based Side-channels. The use of EMI leakage

as a side-channel has been widely investigated. This work [17] ex-

tracts the key of RSA software implementation on a Lenovo laptop

using a near-field magnetic probe with a frequency around 100 kHz.
Vaucelle et al. [43] detect the existence of ambient electromagnetic

fields using a magnetometer bracelet with a frequency of up to 50

kHz. DOSE [9] detects the usage of electrical appliances by moni-

toring device EMI radiations with an expensive EMI measurement

equipment. Magnifisense [44] recognizes the electrical appliance

usage using a wrist-worn magnetic sensor and a set of data ac-

quisition device, with a sampling rate of 16-bit resolution at 44.1

kHz. ZOP [8] utilizes electromagnetic emanations generated by

computing systems during program execution to track a program’s

execution path and generate profiling information.

DeMiCPU is inspired by the aforementioned work and utilizes

the natural discrepancies existing in CPU modules. Given the fact

that a CPU module is indispensable for almost all mobile or smart

devices, DeMiCPU makes a more universal method compared with

aforementioned built-in sensor based approaches.

9 CONCLUSION AND FUTUREWORK

In this paper, we propose DeMiCPU, an effective device fingerprint-

ing approach utilizing the unique features of magnetic induction

(MI) signals generated from CPU modules, as a result of hardware

discrepancy. We evaluate DeMiCPU with 90 mobile devices, includ-

ing 70 laptops and 20 smartphones. The results show that DeMiCPU
can achieve 99.1% precision and recall on average and 98.6% preci-

sion and recall for 30 identical devices, with a fingerprinting time

of 0.6 s . Both precision and recall can be further improved to 99.9%

with multi-round fingerprinting.

Future directions include exploring a larger study to confirm the

scalability of DeMiCPU.

ACKNOWLEDGMENTS

We thank all anonymous reviewers for their insightful comments on

this paper. This work is supported by China NSFC Grant 61702451,

ZJNSF Grant LGG19F020020, and the Fundamental Research Funds

for the Central Universities 2019QNA4027.

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1160

REFERENCES
[1] Aksu, H., Uluagac, A. S., and Bentley, E. Identification of wearable devices

with bluetooth. IEEE Transactions on Sustainable Computing (2018).
[2] Baldini, G., Steri, G., Dimc, F., Giuliani, R., and Kamnik, R. Experimental iden-

tification of smartphones using fingerprints of built-in micro-electro mechanical
systems (mems). Sensors 16, 6 (2016), 818.

[3] Bellovin, S. M., and Merritt, M. Cryptographic protocol for secure communi-
cations, Aug. 31 1993. US Patent 5,241,599.

[4] Bojinov, H., Michalevsky, Y., Nakibly, G., and Boneh, D. Mobile device
identification via sensor fingerprinting. arXiv preprint arXiv:1408.1416 (2014).

[5] Brik, V., Banerjee, S., Gruteser, M., and Oh, S. Wireless device identification
with radiometric signatures. In MobiCom (2008), ACM, pp. 116–127.

[6] Brown, G. FEAST, January 2017. https://github.com/Craigacp/FEAST.
[7] Bullock, J. LibXtract, July 2014. http://jamiebullock.github.io/LibXtract/

documentation/.
[8] Callan, R., Behrang, F., Zajic, A., Prvulovic, M., and Orso, A. Zero-overhead

profiling via em emanations. In ISSTA (2016), ACM, pp. 401–412.
[9] Chen, K.-Y., Gupta, S., Larson, E. C., and Patel, S. Dose: Detecting user-driven

operating states of electronic devices from a single sensing point. In PerCom
(2015), IEEE, pp. 46–54.

[10] Cleveland, T. L. Bi-directional power system for laptop computers. In APEC
(2005), vol. 1, IEEE, pp. 199–203.

[11] Das, A., Borisov, N., and Caesar, M. Do you hear what i hear?: Fingerprinting
smart devices through embedded acoustic components. In CCS (2014), ACM,
pp. 441–452.

[12] Desmond, L. C. C., Yuan, C. C., Pheng, T. C., and Lee, R. S. Identifying unique
devices through wireless fingerprinting. In WiSec (2008), ACM, pp. 46–55.

[13] Dey, S., Roy, N., Xu, W., Choudhury, R. R., and Nelakuditi, S. Accelprint:
Imperfections of accelerometers make smartphones trackable. In NDSS (2014).

[14] Dirik, A. E., Sencar, H. T., and Memon, N. Digital single lens reflex camera iden-
tification from traces of sensor dust. IEEE Transactions on Information Forensics
and Security 3, 3 (2008), 539–552.

[15] Franklin, J., McCoy, D., Tabriz, P., Neagoe, V., Randwyk, J. V., and Sicker, D.
Passive data link layer 802.11 wireless device driver fingerprinting. In USENIX
Security (2006), vol. 3, pp. 16–89.

[16] Gartner. Gartner Forecasts Flat Worldwide Device Shipments Until 2018, January
2017. http://www.gartner.com/newsroom/id/3560517.

[17] Genkin, D., Pachmanov, L., Pipman, I., and Tromer, E. Stealing keys from pcs
using a radio: Cheap electromagnetic attacks on windowed exponentiation. In
CHES (2015), Springer, pp. 207–228.

[18] Getz, R., andMoeckel, B. Understanding and eliminating emi in microcontroller
applications. National Semiconductor (1996).

[19] Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized trees. Machine
learning 63, 1 (2006), 3–42.

[20] Hall, J., Barbeau, M., and Kranakis, E. Radio frequency fingerprinting for
intrusion detection in wireless networks. IEEE Transactions on Defendable and
Secure Computing 12 (2005), 1–35.

[21] Hupperich, T., Hosseini, H., and Holz, T. Leveraging sensor fingerprinting
for mobile device authentication. In Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2016, pp. 377–396.

[22] Instrument, T. Integrated Fluxgate Magnetic Sensor IC for Open-Loop Applications,
March 2016. https://www.ti.com/product/DRV425.

[23] Instruments, T. MSP430F5529 LaunchPad Development Kit, April 2017. http:
//www.ti.com/lit/ug/slau533d/slau533d.pdf.

[24] Jain, A. K., Hong, L., Pankanti, S., and Bolle, R. An identity-authentication
system using fingerprints. IEEE 85, 9 (1997), 1365–1388.

[25] Keysight. U2541A 250kSa/s USB Modular Simultaneous Data Acquisition, June
2017. https://tinyurl.com/yb5r768y.

[26] Kohno, T., Broido, A., and Claffy, K. C. Remote physical device fingerprinting.
IEEE Transactions on Dependable and Secure Computing 2, 2 (2005), 93–108.

[27] Langley, L. E. Specific emitter identification (sei) and classical parameter fusion
technology. In WESCON (1993), IEEE, pp. 377–381.

[28] Le Sueur, E., and Heiser, G. Dynamic voltage and frequency scaling: The laws
of diminishing returns.

[29] Lukas, J., Fridrich, J., and Goljan, M. Digital camera identification from sensor
pattern noise. IEEE Transactions on Information Forensics and Security 1, 2 (2006),
205–214.

[30] Marr, D., Binns, F., Hill, D., Hinton, G., Koufaty, D., et al. Hyper-threading
technology in the netburst® microarchitecture. Hot Chips (2002).

[31] Mondri, R., and Bitan, S. Inspected secure communication protocol, Sept. 1
2009. US Patent 7,584,505.

[32] Nguyen, K. T., Laurent, M., and Oualha, N. Survey on secure communication
protocols for the internet of things. Ad Hoc Networks 32 (2015), 17–31.

[33] Pang, J., Greenstein, B., Gummadi, R., Seshan, S., and Wetherall, D. 802.11
user fingerprinting. In MobiCom (2007), ACM, pp. 99–110.

[34] Radhakrishnan, S. V., Uluagac, A. S., and Beyah, R. Gtid: A technique for
physical device and device type fingerprinting. IEEE Transactions on Dependable

and Secure Computing 12, 5 (2015), 519–532.
[35] Ratha, N. K., Bolle, R. M., Pandit, V. D., and Vaish, V. Robust fingerprint

authentication using local structural similarity. In WACV (2000), IEEE, pp. 29–34.
[36] Remley, K., Grosvenor, C. A., Johnk, R. T., Novotny, D. R., Hale, P. D., McKin-

ley, M., Karygiannis, A., and Antonakakis, E. Electromagnetic signatures of
wlan cards and network security. In ISSPIT (2005), IEEE, pp. 484–488.

[37] Solomon, D. A., Russinovich, M. E., and Ionescu, A. Windows internals. Mi-
crosoft Press, 2009.

[38] Suleiman, D., Ibrahim, M., and Hamarash, I. Dynamic voltage frequency
scaling (dvfs) for microprocessors power and energy reduction. In ICEEE (2005).

[39] Travers, M. Cpu power consumption experiments and results analysis of intel
i7-4820k.

[40] Uluagac, A. S., Radhakrishnan, S. V., Corbett, C., Baca, A., and Beyah,
R. A passive technique for fingerprinting wireless devices with wired-side
observations. In CNS (2013), IEEE, pp. 305–313.

[41] Ureten, O., and Serinken, N. Wireless security through rf fingerprinting.
Canadian Journal of Electrical and Computer Engineering 32, 1 (2007), 27–33.

[42] Van Goethem, T., Scheepers, W., Preuveneers, D., and Joosen, W.
Accelerometer-based device fingerprinting for multi-factor mobile authentication.
In ESSoS (2016), Springer, pp. 106–121.

[43] Vaucelle, C., Ishii, H., and Paradiso, J. A. Cost-effective wearable sensor to
detect emf. In CHI (2009), ACM, pp. 4309–4314.

[44] Wang, E. J., Lee, T.-J., Mariakakis, A., Goel, M., Gupta, S., and Patel, S. N.
Magnifisense: Inferring device interaction using wrist-worn passive magneto-
inductive sensors. In UbiComp (2015), ACM, pp. 15–26.

[45] Wikipedia. Ampère’s circuital law, May 2018. https://en.wikipedia.org/wiki/
Amp%C3%A8re%27s_circuital_law.

[46] Yen, T.-F., Xie, Y., Yu, F., Yu, R. P., and Abadi, M. Host fingerprinting and
tracking on the web: Privacy and security implications. In NDSS (2012).

[47] Zhou, Z., Diao, W., Liu, X., and Zhang, K. Acoustic fingerprinting revisited:
Generate stable device id stealthily with inaudible sound. In CCS (2014), ACM,
pp. 429–440.

[48] Zou, L., He, Q., andWu, J. Source cell phone verification from speech recordings
using sparse representation. Digital Signal Processing 62 (2017), 125–136.

A APPENDIX

A.1 Experimental Device

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1161

Table 3: Experimental devices and their detailed specifications. A total of 90 devices are used, including 70 laptops and 20

smartphones. Among them, 1-30, 31-33, 50-51, 84-85 and 88-89 are of the same model and OS respectively.

No. Manuf. Model OS
CPU Parameters

Model Core Number Thread Number Test Point

1-30 Lenovo ThinkPad T430 Win 7 i5-3320M 2 4 S

31-33 Lenovo ThinkPad T440p Win 7 i5-4210M 2 4 S

34 Lenovo G480 Win 7 i5-3210M 2 4 R

35 Lenovo G480 Win 10 i5-3210M 2 4 R

36 Lenovo ThinkPad X201 Win 10 i5-540M 2 4 F6

37 Lenovo ThinkPad T440 Debian i7-4500U 2 4 N

38 Lenovo ThinkPad W520 GNOME i7-2760QM 4 8 E

39 Lenovo ThinkPad Edge E431 Win 10 i7-3632QM 4 8 S

40 Lenovo ThinkPad Edge E530 Win 10 i5-3210M 2 4 S

41 Lenovo IdeaPad Y470 Win 7 i5-2450M 2 4 E

42 Lenovo IdeaPad Y485 Win 7 A8-4500M 4 4 F5

43 Lenovo Yoga2 13 Win 10 i5-4210U 2 4 F4

44 Lenovo Yoga 710 Win 10 i5-6200U 2 4 O

45 Lenovo U430P Win 10 i5-4200U 2 4 F1

46 Lenovo Erazer Z410 Win 10 i7-4702MQ 4 8 6

47 Lenovo E47a Win 7 i5-2520M 2 4 S

48 Lenovo X200 7455 GNOME Intel P8600 2 2 F

49 Lenovo R720 Win 10 i5-7300HQ 4 4 7

50-51 Apple MacBook Air A1466 OS x i5-4260U 2 4 W&E

52 Apple MacBook Pro A1707 OS x i7-6920HQ 4 8 W&E

53 Apple MacBook Pro A1502 OS x i5-4278U 2 4 C

54 Dell Inspiron N4050 Win 7 i3-2350M 2 4 F

55 Dell Inspiron N5110 Win 7 i5-2450M 2 4 F

56 Dell Inspiron 14 7460 Win 10 i5-7200U 2 4 6

57 Dell Inspiron 15R 5520 Win 10 i5-3210M 2 4 Fn

58 Dell Inspiron 15 7559 Win 10 i5-6300HQ 4 4 F6

59 Dell Latitude E4300 Win XP Intel SP9400 2 2 F

60 Dell Latitude E7440 Win 10 i5-4200U 2 4 E&R

61 Dell XPS13 Win 10 i5-3317U 2 4 6

62 Dell XPS14 L421X Win 10 i7-3537U 2 4 4

63 Asus Eee PC 1201HA Win 7 Intel Z520 1 2 A

64 Asus N46V Win 8.1 i5-3210M 2 4 B&N

65 Asus X450EI323VC-SL Win 10 i5-3230M 2 4 F

66 Acer V5-471G Win 7 i5-3337U 2 4 D

67 HP TPN-Q173 Win 10 i5-6300HQ 4 4 Backspace

68 MSI MS16-H8 Win 10 i7-6700HQ 4 8 Scroll Lock

69 Sony SVT131A11T Win 7 i5-3317U 2 4 X

70 Sony SVT131A11T Win 10 i5-3317U 2 4 X

71 Mi 5 Android 6.0 Snapdragon 820 4 4 BVK∗

72 Mi 5S Android 6.0 Snapdragon 820 4 4 BVK∗

73 Huawei Honor 5X Android 5.1 Snapdragon 616 8 8 BVK∗

74 Huawei Honor 8 Android 6.0 Kirin 950 8 8 BVK∗

75 Huawei Honor V8 Android 6.0 Kirin 950 8 8 BVK∗

76 Huawei P9 Android 6.0 Kirin 955 8 8 BVK∗

77 LG Nexus 5 Android 4.4 Snapdragon 800 4 4 BVK∗

78 LG Nexus 5X Android 6.0 Snapdragon 808 4 4 BVK∗

79 Vivo X7 Android 5.1 Snapdragon 652 4 4 BVK∗

80 Samsung Galaxy S6 Android 5.0 Exynos 7420 8 8 BVK∗

81 Apple iPhone 6 iOS 10.2.1 Apple A8 2 2 BPK•

82 Apple iPhone 6 iOS 11.0.3 Apple A8 2 2 BPK•

83 Apple iPhone 6 Plus iOS 11.1.1 Apple A8 2 2 BPK•

84-85 Apple iPhone 6s iOS 10.3.3 Apple A9 2 2 BPK•

86 Apple iPhone 6s iOS 10.2.1 Apple A9 2 2 BPK•

87 Apple iPhone 6s iOS 11.2.1 Apple A9 2 2 BPK•

88-89 Apple iPhone SE iOS 11.2.1 Apple A9 2 2 BPK•

90 Apple iPhone 7 Plus iOS 10.3.3 Apple A10 4 2 BPK•

∗BVK = Beside Volume Key •BPK = Beside Power Key

Session 5E: Fingerprinting CCS ’19, November 11–15, 2019, London, United Kingdom

1162

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20190808175036
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 474
 343

 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 14
 13
 14

 1

 HistoryList_V1
 qi2base

