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ABSTRACT
Mobile devices have emerged as the most popular platforms to ac-
cess information. However, they have also become a major concern
of privacy violation and previous researches have demonstrated
various approaches to infer user privacy based on mobile devices.
In this paper, we study a new side channel of a laptop that could be
harvested by a commercial-off-the-shelf (COTS) mobile device, e.g.,
a smartphone. We propose MagAttack, which exploits the electro-
magnetic (EM) side channel of a laptop to infer user activities, i.e.,
application launching and application operation. The key insight
of MagAttack is that applications are discrepant in essence due to
the different compositions of instructions, which can be reflected
on the CPU power consumption, and thus the corresponding EM
emissions. MagAttack is challenging since that EM signals are noisy
due to the dynamics of applications and the limited sampling rate of
the built-in magnetometers in COTS mobile devices. We overcome
these challenges and convert noisy coarse-grained EM signals to
robust fine-grained features. We implement MagAttack on both an
iOS and an Android smartphone without any hardware modifica-
tion, and evaluate its performance with 13 popular applications and
50 top websites in China. The results demonstrate that MagAttack
can recognize aforementioned 13 applications with an average ac-
curacy of 98.6%, and figure out the visiting operation among 50
websites with an average accuracy of 84.7%.
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1 INTRODUCTION
Mobile devices have emerged as the most popular platforms to
assist daily activities and exchange information over the Internet.
According to Gartner [11], there will be more than 11 billion phones,
tablets and laptops by the end of 2018. Along with the rapid growth
are the privacy concerns. The proliferation of mobile devices has
been a major concern in the security and privacy communities.
Various side channels have been utilized for electrical-appliance
usage analysis [7, 16, 26], decryption of cryptographic computa-
tion [12, 13, 18], and human-device activity recognition [5, 8, 32, 33].
These side-channel attacks, especially the last ones, draw increas-
ing attention due to the widespread use of mobile devices and
the increasingly intensive interaction between human and smart
devices.

Prior researches [5, 8, 17, 32, 33] have shown several side-channel
attacks that can sense human-device activities. Zhuang et al. and
Zhu et al. utilize acoustic emanations to infer user keystrokes [32,
33]. Cai et al. use motion sensors to infer user tapping and gesture
inputs on smartphones [5]. Clark et al. use the AC power consump-
tion to recognize the web page that a user browses on a laptop [8].
However, Clark’s scheme requires modification of the power outlet
to measure the AC power consumptions and can only work when
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Figure 1: The cause of EM emission from the laptop’s CPU. An application consists of various system calls, which are composed
of different instruction sequences and those instructions generate corresponding currents, and finally EM signals.

the laptop is being charged. Jana et al. sense user applications based
on the footprints of applications on memory usage [17], which is in-
trusive since they need to log into the system and run a background
process in parallel with the target application.

In this paper, we investigate a new EM-based side-channel attack
for user activity inference. We propose MagAttack, which detects
and recognizes user activities by tracking the EM emissions from
the laptop’s CPU. Compared with existing side-channel attacks,
MagAttack is non-intrusive and can be implemented on the COTS
mobile devices without any hardware modification. The underlying
principle of MagAttack is that, for an application, each time when
being launched, a fairly unique and consistent sequence of CPU
instructions are executed, as shown in Fig. 1. When a CPU exe-
cutes different instructions, it emits various EM signals accordingly,
which can be further captured by the built-in magnetometer in
a mobile device for privacy inference. MagAttack recognizes two
levels of user activities: (1) which application is being launched,
i.e., application recognition, and (2) what a user is doing with the
application, i.e., operation recognition. For example, we can figure
out that a user is launching a web browser and recognize which
web page the user is visiting. The significance of MagAttack lies
in that it infers the basic operations of laptops and thus can be
the prerequisite of many other user privacy violation attacks, e.g.,
when inferring user passwords through keystrokes, MagAttack can
be employed first to detect the launching of finical applications
such as PayPal. Besides, with the help of MagAttack, an adversary
can learn a user’s interests and habits by continuously tracking the
application usage of the user.

Inferring laptop user activity via the EM side channel is promis-
ing yet challenging. First, both the location and orientation of a
smartphone affect the captured EM signals. The former decides
the initial EM amplitude as a result of the earth’s magnetic field,
and the latter determines the changing trend of the EM ampli-
tude. Second, the magnetic sensors in COTS mobile devices such
as smartphones usually have low sampling rates. Different from
the sensors used in [12, 13, 25, 26] with working frequency ranging
from MHz to GHz, a magnetometer in mobile devices can only
measure frequency up to 100 Hz. In other words, information from
high frequency signals is lost. Third, EM signals might be incon-
sistent when the application changes, e.g., a website is updated.
Actually, many websites change their contents and components
such as pop-out advertisements on a daily basis, and the captured
EM signals are different as a result.

To address aforementioned challenges, we first propose an earth
impact reduction scheme to eliminate the influence from the earth’s
magnetic field and the ambient noise. Then, for application launch-
ing detection, we design a sliding-window based pre-screening
algorithm for preliminary detection, and a fine-grained Support
Vector Machine (SVM) classifier to further ensure high accuracy.
For application recognition, we employ Short Time Fourier Trans-
form (STFT) and Principal Component Analysis (PCA) for feature
extraction, and design a 1-Nearest Neighbor (1NN) classifier to
achieve accurate recognition. For operation recognition, we use
Wavelet Multi-Resolution Analysis algorithm (MRA) to process the
inconsistent EM signals and build a weighted 1NN classifier to deal
with their dynamics.

Application Scenario:we envision that MagAttack can be used
in public areas where an adversary sits near a victim and attempts
to infer the victim’s laptop activities for habit tracking or further
privacy violation attacks such as password inference. To the best of
our knowledge, this is the first side-channel attack to infer laptop
user activities by the means of CPU EM emissions. In summary,
our contribution includes below.

• We analyze the underlying correlation between the applica-
tions and the corresponding CPU EM emissions. We propose
to use a mobile device to infer user activities on a laptop by
tracking the EM emissions from the laptop’s CPU.

• We investigate the distinctiveness of EM emissions caused
by various user activities, and elaborately design MagAttack
to differentiate them reliably.

• We implement MagAttack on commercial smartphones with-
out any hardware modification, and evaluate it with 13 pop-
ular applications and 50 top websites in China. The results
demonstrate that MagAttack can detect application launch-
ing with a precision of 97.0% and a recall of 92.1%, recognize
the 13 applications with an average classification accuracy of
98.6%, and classify the 50 websites with an average accuracy
of 84.7%.

2 MEASURING EM EMISSION TO INFER
APPLICATION

In this section, we first introduce the built-in magnetometer on
mobile devices, and then show the feasibility of MagAttack.
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Table 1: Top 10 system calls invoked when different applica-
tions being launched.

Safari Chrome iTunes
workq_kernreturn (17.6%) kevent (24.0%) workq_kernreturn (13.9%)

bsdthread_ctl (13.0%) write (12.4%) geteuid (9.5%)
stat64 (8.4%) workq_kernreturn (6.6%) stat64 (8.2%)
pread (8.2%) read (6.1%) bsdthread_ctl (7.9%)

madvise (6.5%) recvmsg (5.8%) getdirentires64 (4.9%)
openat (3.5%) stat64 (5.0%) getattrlist (4.7%)

(3.0%) bsdthread_ (4.3%) madvise (4.6%)
kevent_qos (2.9%) psynch_mutexdrop (2.7%) read (3.5%)

mmap (2.6%) psynch_ (2.4%) open_nocancel (3.2%)
geteuid (2.5%) mmap (2.0%) kevent_qos (2.9%)

2.1 Magnetometer on Mobile Device
A magnetometer is an instrument that can measure the direction,
strength, and relative change of a magnetic field at a particular
location. The built-in magnetometer on mobile devices is usually
a Hall Effect sensor, which is small, cheap and low in sensitivity
(<= 5mV /mT ). The sampling rate of the built-in magnetometer is
configurable, which usually varies from 4 Hz to 100 Hz for smart-
phones. Due to its low cost and extensive functions, e.g., employed
with gyroscopes and accelerometers for motion tracking, the mag-
netometer is widely equipped on COTS mobile devices, and thus
can be a good alternative for EM measuring.

2.2 Application Launching
During application launching, the Launch Services framework pro-
vides primary support. It sends a message to WindowServer, which
in turn calls fork() and execve() (both are system calls) to run
the requested application [24]. The requested application then, runs
user functions in the user space and invokes system calls to inter-
act with the kernel and access the hardware. Thus, an application
executes both user functions and system calls when being launched.

Upon user activity inference, we focus on the system calls in-
voked during application launching. As shown in Fig. 1, an applica-
tion consists of a series of system calls. Our hypothesis is that dif-
ferent system calls are invoked at different frequencies for various
applications. To validate it, we use a system trouble-shooting tool
dtrace[10] (available on Linux, Mac OS, and Windows [14]) to cap-
ture the name and time of the executed system calls when various
applications (Safari, Chrome, and iTunes) are being launched on the
same laptop (a MacBook Air). The results in Tab. 1 demonstrate that
the most intensive system call for Safari is workq_kernreturn(),
which accounts for 17.6%. While for Chrome, it is kevent() that
holds the largest portion of 24.0%. For iTunes, workq_kernreturn()
appears as the most intensive system call as well but with a different
proportion of 13.9%. It confirms our hypothesis that the system
calls invoked when launching different applications, are discrepant
in both type and frequency, even for applications of the same type.

2.3 From System Call to EM Emission
A system call is a wrapper function that consists of a sequence of
instructions [15], as revealed in Fig. 1. As a result, various system
calls are composed of different instruction sets and thus generate
distinct CPU power consumptions.

A CPU chip consists of a large number of CMOS (Complemen-
tary Metal Oxide Semiconductor) [27] transistors arranged in a
lattice form, which perform basic arithmetic, logical, control and

(a) Safari

(b) Chrome

(c) iTunes

Figure 2: EM signals are correlated with the system call
traces but distinct among applications. Note that the two
traces are normalized for illustration and the Y-axis repre-
sents the frequency of system calls or the magnitude of EM
signals.

input/output operations specified by the instructions. Energy con-
sumption of the CPU heavily depends on the power dissipation of
the CMOS lattice. Average CPU power consumption [23] Pavд can
be calculated as follows:

Pavд =
CV (α)2AF (α)

2
(1)

where C represents the CMOS capacitance and is a function of the
transistor size and the wire length. V is the supply voltage to CPU.
A is the average switching frequency of the CMOS transistors and
F is the clock frequency. V and F are further related to the CPU
load α . When executing various instructions, the CPU involves
different numbers of CMOS transistors and generate different loads,
resulting in distinct power consumptions as well as CPU currents.
Since various system calls are composed of different instruction
sets, the CPU currents for those system calls are likely to be diverse,
which contribute to distinct EM signals.

2.4 Feasibility of MagAttack
As various applications invoke different system calls when being
launched, the emitted EM signals shall correlate with the system
calls executed by the CPU but remain distinct among applications.
To validate our hypothesis, we capture the EM signals with an
iPhone SE smartphone when different user applications (Safari,
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Figure 3:Workflow of MagAttack, which detects application launching, recognizes user activities based on EM signals collected
by mobile devices in the target laptop’s vicinity.

Chrome and iTunes) are launched on a MacBook Air laptop. During
experiments, the target laptop is placed on a round table with the
attack smartphone attached on the backside to draw no attention,
as shown in Fig. 7. The detailed information of the smartphone and
the laptop is depicted in Tab. 2 and Tab. 3 in Sec. 5. Meanwhile, we
use dtrace to capture the name of the executed system calls and the
time they are being called in microsecond granularity.

Since the system call is recorded in microseconds while the EM
signal is recorded in 10-millisecond granularity (the sampling rate
of the iPhone SE magnetometer is 100 Hz), we transform the system
call trace into a time-versus-number histogram. The transformed
trace is a two-column matrix E = [®t ; ®n], where vector ®t records
time units in 10-millisecond granularity, and vector ®n records the
number of system calls during that time unit. Then, we align the
magnetic trace with the system call trace by shifting the former
one so that the two traces have maximal correlation coefficient. We
plot the logarithmic system call traces and the EM signals in Fig. 2
(both are normalized for illustration), from which we can observe
that:

• EM signals show strong resemblance to the system call traces
captured at the same time, e.g., the system-call-intensive
moment also has a high EM magnitude.

• EM signals demonstrate distinct patterns among applications,
even for those of the same type: Safari and Chrome, e.g., the
EM signal of Chrome is more dynamic and has more peaks
compared with that of Safari.

These findings shed light upon inferring user activities on laptops
via EM signals captured by nearby mobile devices. Since various
user activities invoke different system calls, the resulting CPU
power consumptions cause varying EM signals, which are distinct
and associated with the activities and thus in turn can be utilized
to conduct user activity inference.

3 THREAT MODEL
In this section, we present the threat model of MagAttack. Since the
adversary’s goal is to infer user activities on user’s laptop without
his awareness, we consider the following attack scenario: in a public
area such as a library, a target is using his laptop. The adversary
sits near to him, and tries to figure out what the target is doing on
the laptop (e.g., what applications the target launches and what
operations the target performs). In such a scenario, we assume that
the adversary has following abilities.

Vicinity to Target Laptop. We assume the adversary’s mobile
devices can be in the target laptop’s vicinity, and draw no attention.

No Target Laptop Access.We assume that an adversary may
target at any users of her choices, but she has no direct access to

Algorithm 1: Earth Impact Reduction
Input:maд = {maдx (t ),maдy (t ),maдz (t )}, t = 1 . . . n:

three-dimensional signals
Output:

• M = M (t ), t = 1 . . . n : aggregated signals.
• Mnorm = Mnorm (t ), t = 1 . . . n: aggregated and
normalized signals.

1 M =maд
2 for i ∈ {x , y, z } do
3 Mi = Mi − avд(Mi ) // centralization

4 for t ∈ [1, 2, . . . , n] do
5 M (t ) =

√
Mx (t )2 +My (t )2 +Mz (t )2 // aggregation

6 Mnorm =
M−min(M )

max (M )−min(M )
// normalization

the target laptop. She cannot physically touch/see the screen, or
install malware.

No User Interaction. The adversary cannot ask users to per-
form any operations, such as pressing a button or running a specific
application.

4 MAGATTACK DESIGN
4.1 Overview
To infer user activities, the adversary first puts her mobile device in
the target laptop’s vicinity and draws no attention. Then, the attack
device collects the electromagnetic emissions from the laptop’s
CPU, based on which MagAttack detects application launching,
recognizes running applications, and figures out user operations,
as shown in Fig. 3.

4.2 Launching Detection
In this subsection, we elaborate how to detect the launching process
of an application, as the first step of user application redefinition.

4.2.1 Earth Impact Reduction. Due to the impact of the earth’s
magnetic field, the captured EM signals are geo-spatial dependent.
Even for an application launched on the same laptop but with
different geo-spatial locations or laptop-smartphone orientations,
the EM signals can vary a lot. As shown in Fig. 4(a) and 4(b), the
3-dimensional EM signals at two different locations/orientations
differ in values on the axis of x,y, and z. MagAttack shall eliminate
the earth impact to achieve location/orientation-free attack.

The mobile device sensor records surrounding EM signals in
three dimensions (x,y, z). The initial EM magnitude of each axis
depends on the location of the mobile device, and the changing
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(a) 3-dimensional EM signals (setting 1). (b) 3-dimensional EM signals (setting 2). (c) 1-dimensional normalized signals (set-
ting 1).

(d) 1-dimensional normalized signals (set-
ting 2).

Figure 4: Before vs. after earth impact reduction. Setting 1 and 2 refer to two different geo-spatial locations and laptop-
smartphone orientations for launching the same application.

trend lies with the laptop-smartphone orientation. To eliminate the
impact of location and orientation, we utilize the relative change of
the EM signals instead of the original data. We assume this change
is caused by the launching and thus is consistent with the same
application regardless of positions/orientations.

To achieve it, we first centralize the magnetic magnitude of each
axis to resolve its relative change to the earth’s magnetic field, and
then aggregate and normalize the relative changes in all three axes,
as shown in Algorithm 1. As a result, we can see from Fig. 4 that
after earth impact reduction, the 1-dimensional normalized signals
under two different settings becomemore similar and can be further
identified as the same one, as discussed later.

4.2.2 Pre-screening. EM signals usually remain stable when no
application is started but can vary significantly during the process
of application launching. To improve the accuracy and efficiency of
launching detection, we design a pre-screening algorithm that uses
a timewindow to scan through the EM signals and filter out the time
windows that are unlikely to contain the start of an application.

As an application can start at any time, we detect the high vari-
ances of the EM signals over a certain time period. A smaller time
window and moving step can achieve higher accuracy at the cost of
lower detection efficiency. To strike the balance between accuracy
and efficiency, we set the time window to be 1 s and the moving step
to be 0.1 s . In addition, we utilize the Exponential Moving Average
(EMA) approach [20] to update the variance threshold during the
period without application launching:

δt+1 = (1 − α)δt + α ×Var (t) (2)

where δt and Var (t) are the threshold and the EM variance at the
time period t , respectively. α represents the degree of weighting
decrease and a larger α indicates a more dominant current vari-
ance in updating the threshold. In our implementation, we set α
to be 0.1. A windowWt is detected when its EM signal variance is
substantially larger than the threshold δt :

Var (t) ≥ β × δt (3)

where β is the coefficient of the threshold. A larger β indicates that
fewer sliding windows will be detected. In our implementation, we
set β to be 3. Upon detecting a sliding window with a large variance,
we can further classify it with a Support Vector Machine (SVM)
based classifier.

4.2.3 Launching Detection. In addition to application launching,
other user operations on the laptop may also contribute to high
variances of EM signals. To address it, we utilize a SVM based
classifier to further refine the launching detection results.

As the CPU instructions involved with a launching operation
often take seconds to complete, a 1-second EM trace may not hold
enough features to differentiate launching from other operations.
Therefore, for each 1-second EM trace detected by the pre-screening
algorithm, we append it with the subsequent k − 1 one-second EM
traces. In our implementation, we choose k to be 4 based on our
observation that the variance of EM signals becomes indistinctive
after 4 seconds since we start the application. For each k-second
normalized EM time series, we smooth it with the Wavelet recon-
struction at level 4, and then employ Short Time Fourier Transform
and Principal Component Analysis to extract a feature vector. Since
we use the same feature extraction techniques for launching detec-
tion and application recognition, we defer to present the technical
details of feature extraction in the next subsection. Then, we feed
the feature vector of each k-second EM trace to a SVM based binary
classifier with a kernel type of the radial basis function [6], whose
output is whether it is the start of an application. Combinedwith the
pre-screening, MagAttack is able to detect application launching
accurately and reliably.

4.3 Application Recognition
After detecting the launching of an application, we aim at figuring
out what the application is.

4.3.1 Data Pre-processing. After launching detection, we obtain
a number of k-second time windows that contain the EM traces
of application launching. Hereafter, we use time window/interval
to represent the EM trace contained in that time window/interval
for short. For these time windows, we perform two pre-processing
operations: window expansion and window alignment before feature
extraction.

Window Expansion. To guarantee that the selected time win-
dow contains sufficient information, even for applications that need
a long time to initialize (e.g., more than 10 seconds), we append each
aforementioned k-second time window with the subsequentm − k
one-second time windows, wherem ≥ k . In our implementation,
we choosem to be 10. This expansion can help MagAttack achieve
higher accuracy by including more features during the launching
process.
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(a) Spectrogram: Microsoft PowerPoint (b) EM Signal: Microsoft PowerPoint

(c) Spectrogram: Skype (d) EM Signal: Skype

(e) Spectrogram: Mail (f) EM Signal: Mail

Figure 5: STFT spectrum of EM signals reconstructed on the
first wavelet level for different applications.

Window Alignment. Due to the finite granularity of the win-
dow sliding approach, the starting time of each window deviates
more or less from the ground truth. To reduce the impact of devia-
tions, we align these time windows in two steps. First, we compute
the centroid of these time windows using the average Dynamic
Time Warping (DTW) scheme [21], which is the time window that
has the minimum averaged DTW cost to the others. Then, we use
the centroid as the base to shift each other time window in the time
series. As a result, each shifted time window has the maximum
correlation coefficient with the base signal and is stillm seconds.

4.3.2 Feature Extraction. We then extract a feature vector for each
aligned time window. We first divide a EM time window into over-
lapped time intervals and conduct Fast Fourier Transform (FFT)
on each interval, which extracts time-variant features in the fre-
quency domain. Then, we conduct the Principal Component Anal-
ysis (PCA) [29] on the FFT result of each time interval and obtain
the first PCA component, which aggregates features in different
frequency scales. Finally, we sequentialize the PCA component
of each time interval to construct a feature vector for application
recognition.

Short Time Fourier Transform. For each aligned time win-
dow, we divide it into time intervals using a sliding window with
an interval size of w and a step size of 0.5 ∗ w. Then, each time
interval is zero padded to the length of 2 ∗w , before conducting
FFT to get the STFT spectrogram. We calculate the abstract value
of the FFT results and obtain the first half. As thus, for each time
window, we get a t × l spectrogram matrix S , where t rows cor-
respond to t time intervals, and l columns are the FFT results of
that time interval. In practice, we setw = 320 milliseconds. Fig. 5
illustrates the STFT spectrograms of 3 Mac OS applications (Mi-
crosoft PowerPoint, Skype and Mail), where the X-axis represents
the time interval, the Y-axis represents the frequency, and the color
represents the energy of the frequency.

Principal ComponentAnalysis.We then use the PCA to track
the correlation of FFT results among different frequencies, and
combine them by extracting the first principal component. We
conduct PCA on the FFT results of each time interval in three
steps: data preparation, coefficient calculation, and feature vector
construction.

(1) Data Preparation. Let s be the number of time windows.
With STFT, each time window is transformed into a spectrogram
matrix with t rows. For each time interval, we extract its FFT results
from aforementioned spectrogrammatrices to construct a new inter-
val matrix. In this way, we build t interval matrices H1,H2, . . . ,Ht ,
and each matrix has s rows.

(2) Coefficient Calculation. For each interval matrix Hi , we
calculate its principal component coefficient matrix Ci . Each col-
umn of Ci contains coefficients for one principal component and
the columns are arranged in the decreasing order of component
variance. We then obtain the first principal component of Hi , i.e.,
the first column of Ci , for feature vector construction.

(3) Feature Vector Construction. We conduct PCA on the spec-
trogram matrix S to build feature vector V . The ith element of V is
calculated as:

V (i) =
l∑
j=1

S(i, j) ∗Ci (1, j) (4)

where l is the column number of the spectrogram matrix S as well
as the length of FFT results for each time interval.

In this way, for eachm-second time window, we extract a feature
vector V with t elements, where t is the number of time intervals
that the time window is divided into. We envision that this fea-
ture vector retains the time-varying frequency features of the EM
signals.

4.3.3 Application Classification. Given the feature vectors ex-
tracted from the training data, we build an application recognition
classifier using the 1-Nearest Neighbor (1NN) algorithm [28], which
is lightweight and non-parametric. We employ the Euclidean dis-
tance to evaluate the distance between two feature vectors, i.e., two
samples. When inferring, the 1NN algorithm classifies the testing
feature vector into the closest training vector. Since we have aligned
each sample before feature extraction, the Euclidean distance works
well in our algorithm.

4.4 Operation Recognition
In addition to application recognition, MagAttack attempts a more
fine-grained detection, i.e., operation recognition. We analyze the
web browser as an example and regard visiting different web pages
as different operations. However, our method is not limited to it
and can be applied to other applications as well. We capture the EM
signals when a web page is being launched, and extract a feature
matrix from its EM signals. Specifically, we use Wavelet Multi-
Resolution Analysis (MRA) [1] to get the de-noised signals at N
Wavelet levels. Then, we extract a feature vector from each of the
N reconstructed signals using the same approach in Sec. 4.3.2, and
arrange the N feature vectors in rows to construct a feature matrix.
With the obtained feature matrix, we use a variant of 1NN classifier
to achieve operation recognition.
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(a) Level-1 reconstruction. (b) Level-2 reconstruction. (c) Level-3 reconstruction. (d) Level-4 reconstruction.

Figure 6: Level 1-4 reconstructed EM signals using the Wavelet MRA.

4.4.1 Wavelet Multi-Resolution Analysis. Opening a particular web
page requires executing network-related CPU instructions over
a short time interval, resulting in EM signals with time-varying
frequency characteristics. EM signals generated by opening a web
page are usually more inconsistent than those generated by applica-
tion launching. The reason is that for applications, CPU instructions
executed by different launchings are fairly consistent while for web
pages, they are likely to be various as a result of dynamic contents,
e.g., pop-out online advertisements.

To address it, we use the Wavelet MRA to de-noise the EM sig-
nals of web pages at different granularity scales before extracting
time-frequency features. The insight is that, although each time
opening a web page may involve dynamic contents and thus dif-
ferent CPU instructions, the EM signals of the same web page are
similar at a coarser granularity scales with subtle differences at a
finer granularity. We analyze EM signals of different web pages at
N granularity scales with N different weights, and N is set to be
5 based on the Shannon entropy-theory [9]. In the following, we
elaborate the details of the employed MRA approach.

Wavelet Decomposition. First, we decompose the EM signals
generated by web page opening with two complementary filters: a
low-pass filter, which generates approximation coefficients, and a
high-pass filter, which generates detail coefficients. For an EM time
series, we decompose them iteratively from level 1 to level N , and
get a coefficient vector Dn as:

Dn = (an,dn,dn−1,dn−2, . . . ,d1) (5)

where an contains the approximation coefficients at level n and dn
contains the detail coefficients at level n, with 1 ≤ n ≤ N .

Wavelet Reconstruction. Then, we reconstruct an approxima-
tion signal from level 1 to level N , respectively. For each level n, we
calculate the reconstructed signal by up-sampling and convolution
from level 1 to level n with the approximation coefficient an . An
illustration is provided in Fig. 6, which shows an increasing order
of denoising from level 1 to level 4. After denoising, we extract
a feature vector for each of the N reconstructed approximation
signals using the same approach in Section 4.3.2. Then, the N fea-
ture vectors are combined in rows to form a feature matrix for
classification.

4.4.2 Weighted 1NN. Similar to application classification, we use a
1NN based classifier. The difference lies in that, the feature matrix
of a web page browsing has N rows, with each row representing
a feature vector of a wavelet reconstruction level. These feature
vectors shall have different influence on the distance measurement.

Figure 7: The experimental scenario of MagAttack. We keep
the attack device under the table to draw no attention. The
round table is 2.5 cm in thickness.

Specifically, the feature vector of level 1 represents the finest fea-
tures, and thus should be assigned with the highest weight. On
the contrary, the feature vector of level N represents the coarsest
features, and thus should be assigned with the lowest weight. As a
result, we use a weighted 1NN algorithm to calculate the distance
between two feature matrices of web page browsing. We define the
distance between two feature matrices Sp and Sq as the weighted
sum of their Euclidean distances in each row vector as follows:

Dist(p,q) =
N∑
n=1

wn .∥Sp − Sq ∥n (6)

∥Sp − Sq ∥n =

√√ w∑
i=1

(Sp (n, i) − Sq (n, i))2 (7)

where wn is the weight assigned to the distance of the nth row
vector, based on the coarseness of its corresponding wavelet recon-
struction level. In general, the weight of the nth row distance is
assigned as:

wn = 2N−n (8)
As thus, the 1th row vector is assigned with the highest weight
w1 of 2(N−1), and the N th row vector is assigned with the lowest
weightwN of 20.

5 PERFORMANCE EVALUATION
To evaluate the performance of MagAttack, we have conducted
experiments with 13 popular applications and 50 top websites in
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Table 2: Summary of experimental laptops.
Machine Type MacBook Air MacBook Pro Lenovo T440p
OS Version Mac OS 10.10.5 Mac OS 10.11.1 Win 7 Home

Processor Intel Core i5
1.4 GHz

Intel Core i5
2.7 GHz

Intel Core i5
2.6 GHz

Memory 4-GB DDR3
1600 MHz

8-GB DDR3
1867 MHz

8-GB DDR3L
1600 MHz

China across 30 days. In summary, the performance of MagAttack
is:

• MagAttack achieves a precision of 97.0% and a recall of 92.1%
in application launching detection, an average accuracy of
98.4% to recognize 13 applications, and an average accuracy
of 84.7% to classify the 50 top websites in China.

• MagAttack can operate with little influence from data fresh-
ness, hardware platform, operating system, sensor model
and sampling rate.

5.1 Experiment Setup
We conduct MagAttack in a lab with 3 laptops and 2 smartphones.
The detailed settings are as follows.

Target Device.We use a MacBook Air laptop as the main target
device. In addition, we use a MacBook Pro and a Lenovo T440p
laptop to evaluate the performance of MagAttack on various op-
erating systems. The detailed information of each target device is
shown in Tab. 2.

Attack Device.We use an iPhone SE smartphone as the main
attack device to capture the laptop EM emissions. In addition, we use
a Nexus 5 smartphone to evaluate the performance of MagAttack
with various attack devices. The detailed information of each attack
device is shown in Tab. 3.

Attack Scenario. We utilize the attack smartphone to record
the EM emissions when the target laptop is launching different
applications or web pages. The target laptop is placed on a round
table with the attack device attached on the backside to draw no
attention, as shown in Fig. 7. The round table is 2.5 cm in thickness.
Then, we acquire themeasurements from the built-inmagnetometer
and transfer these EM measurements to a cloud server for further
processing.

Application/Operation. For application recognition, we
choose 13 popular applications available on Mac OS that cover
the following categories: Productivity, Business, Entertainment,
Tool, and Social Networking, with a summary in Tab. 4. For opera-
tion recognition, we take the web browser Chrome as an example
and regard the operations of opening 50 different web pages as 50
different operations. We use the top 50 web sites of China listed in
Alexa [2]. For the convenience of data collection, we use a Python
script to launch applications/web pages iteratively. Each applica-
tion/web page is being launched for 10 s considering that most
applications can be launched within 10 s , with a 5 s blank period
between two successive launchings.

5.2 Metrics
We use precision and recall to evaluate the performance of
MagAttack on launching detection, and accuracy to evaluate the
performance of MagAttack on application recognition and opera-
tion recognition.

Table 3: Summary of experimental phones.
Phone Type iPhone SE Nexus 5

OS iOS Android
Sensor Rate 100 Hz 50 Hz

Table 4: Summary of experimental applications.

ID App
Version

(MacBook Air)
Version

(MacBook Pro)
P PowerPoint 14.1.0 15.13.3
W Word 14.1.0 15.13.3
E Excel 14.1.0 15.13.3
C Chrome 54.0.2840 54.0.2840
S Safari 10.0.1 10.0.1
K Skype 7.39 7.16
I iTunes 12.5.3.17 12.5.3
V VLC 2.2.3 3.0.0
M Mail 8.2 10.1
O OneNote 15.28 15.28
R PDF Reader 2.4 2.4
F FaceTime 3.0 4.0
G Game Center 2.0 2.0

(a) Pre-screening model performance. (b) SVM model performance.

Figure 8: Performance of application launching detection.

Precision. Precision is denoted as T P
FP+T P , whereTP represents

the true positives, i.e., the number of times that MagAttack correctly
detects an application launching. Similarly, FP refers to the false
positives, the number of times that MagAttack falsely classifies a
time interval as an application launching.

Recall. Recall is denoted as T P
FN+T P , where FN is the number

of time intervals that contain an application launching but are not
detected by MagAttack.

Accuracy. For each application/web page, accuracy is defined
as the ratio of the number of correctly recognized samples to the
total number of testing samples. We use the average of the accuracy
for all applications/web page as the final recognition accuracy of
MagAttack.

5.3 Launching Detection Results
We first evaluate the launching detection performance of
MagAttack. During experiments, we launch each of the 13 applica-
tions for 20 times and collect a 3900-second EM time series. We first
employ the pre-screening model to locate candidate time windows
that have high probabilities to contain application launching. The
results in the Fig. 8(a) indicate that the pre-screening model can
detect most of the launching timestamps with a recall of 97.3%,
but a few false positives may occur. The SVM model further re-
fines the pre-screening model decision by discarding false positive

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

290



candidates, where we adopt the cross-validation scheme to avoid
over-fitting. As a result, their combined performance achieves a
precision of 97.0% and a recall of 92.1%, as shown in Fig. 8(b).

5.4 Application Recognition Results
5.4.1 Overall Performance. In the first experiment of application
recognition, each of the 13 applications is launched for 50 times,
with different laptop-smartphone geo-spatial locations and random
laptop-smartphone orientations across 3 days. For each collection,
we record a 10-second EM sample from the moment the application
is launched.We randomly choose 10% samples as the testing set, and
use the other samples as the training set. We repeat this process for
10 times and use the average of the 10-fold cross validation as the
final results. The results in the “Fresh Data” in Fig. 9(a) demonstrate
that, MagAttack achieves an average recognition accuracy of 98.6%
across the 13 experimental applications.

5.4.2 Impact of Data Freshness. MagAttack achieves high perfor-
mance on fresh data. However, in real attacks, it is more likely that
MagAttack shall operate with old training data. To evaluate the
impact of data freshness, we collect training samples 20 days earlier
than collecting testing samples. The results shown in the “Old Data”
in Fig. 9(a) indicate that the freshness of training data has little
impact on the performance of MagAttack. We assume it is because
that applications barely change their components unless updated.
Overall, MagAttack achieves an average accuracy of 97.7% when
training data is out-of-date. One performance decrease is observed
on iTunes. We assume the reason is that iTunes updates its home
page with different music advertisements now and then, which
leads to various EM signals.

5.4.3 Impact of Background Application. When recognizing a
launched application, there might be other applications running
in the background, which generate EM emissions as well and thus
may interfere with the application recognition. To evaluate the
impact of background applications, we train the classifier using
samples without background applications, and test it using samples
with two other applications running in the background. The two
selected applications are a QuickTime application, which is play-
ing music, and a MATLAB application, which is calculating. Since
application launching mainly produces dynamic EM emissions, we
assume those active applications may introduce more interference.
The results in the “Noisy Data” in Fig. 9(a) show that MagAttack
is slightly impacted by background applications when recognizing
PowerPoint, Word, Excel and iTunes, but works well with other 9
applications.

5.4.4 Impact of Training Data. In practice, we cannot always obtain
training data from the target laptop. To investigate the impact of
training data, we collect training samples from a MacBook Air lap-
top, and testing samples from a MacBook Pro laptop. Both laptops
are installed with the 13 applications but some of them are various
in application version. The results in the “Data from Different Ma-
chines” in Fig. 9(b) demonstrate that, among the 13 applications on
different laptops, MagAttack can classify 8 of them: Chrome, Safari,
iTunes, VLC, Microsoft OneNote, PDF Reader, FaceTime and Game
center with an accuracy of 94.2%. These 8 applications, except for
the VLC player and FaceTime, have the same application version on

(a) Application recognition performance on fresh, old and noisy data.

(b) Impacts of machine diversity.

Figure 9: Performance of application recognition.

Figure 10: Performance of MagAttackwith various attack dis-
tance.

both machines, as shown in Tab. 4. We find that VLC and FaceTime
are the most lightweight applications by calculating the number of
system calls executed when being launched. Therefore, we assume
that the version difference of VLC player and FaceTime has little
impact on its CPU instructions and thus the EM radiations. The rest
5 applications decrease the average recognition accuracy to 57.9%
due to the differences in both application version and laptop hard-
ware. However, we can further increase the accuracy to 94.3% by
data merging. After merging training samples from both machines,
MagAttack can recognize applications from either laptop with an
accuracy of 94.3%, as shown in the “Mixed Data” in Fig. 9(b).

Aforementioned results demonstrate that application version
and laptop model included in the training set do have impact on the
recognition performance. However, we assume that MagAttack can
achieve cross-device attack by including more application versions
and laptop models during the training process. Specifically, the
adversary can build an application library that contains common
applications and their popular versions, and use the data from the
library to train a comprehensive classifier. In addition, we assume
that the adversary can obtain the laptopmodel of the victim through
observation and build a corresponding classifier with a laptop of
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(a) Estimation error of detecting the opening time of web pages.

(b) Web page recognition performance on fresh and old data.

Figure 11: Performance of user operation recognition.

the same model. We believe that this kind of overhead might be
affordable for adversaries who attempt to track the behaviors of
others.

5.4.5 Impact of Device Distance. Due to the limited sensitivity of
the built-in magnetometer, the captured EM signals become weak
whenmoving the attack device away from the laptop. To investigate
the influence of the attack device placement, we vary the distance
between the laptop and the phone.We train the classifier with traces
collected at a distance of 2.5 cm, and test it with traces collected
from various distances. Starting from 1 cm, we gradually enlarge
the distance between the laptop and the phone with a step of 0.5 cm.
The performance of MagAttack at each distance is shown in Fig. 10,
fromwhich we can see that within a distance of 1−3 cm, MagAttack
can achieve a high accuracy (> 92%). If the attack distance is beyond
this range, we consider to employ specialized hardware to enhance
the signal reception capability.

5.5 User Operation Recognition Results
5.5.1 Webpage Browsing Detection. For user operation recognition,
we first detect the event of web page browsing. We use a script to
open 50 web pages in a random order in the Chrome web browser,
and record the exact opening instant of each web page. In the mean-
time, we capture the corresponding EM emissions and estimate
the browsing time. The results shown in Fig. 11(a) demonstrate
that MagAttack can detect all of the 50 web pages with an average
estimation error (in absolute values) of less than 0.12 seconds.

5.5.2 Operation Recognition Performance. To evaluate the user op-
eration recognition performance of MagAttack, we collect 2500
samples for 50 web pages across 3 days. The “Fresh Data” in
Fig. 11(b) shows the accuracy when MagAttack classifies among
different numbers of web pages. Specifically, MagAttack achieves

Figure 12: Performance of application recognition on the
Windows laptop.

an average accuracy of 100% when differentiating 5 web pages,
and 96.7% for both 10 and 15 web pages. With the increasing of
web pages, the recognition accuracy slightly decreases. Neverthe-
less, MagAttack can still achieve an average accuracy of 84.7% in
differentiating all the 50 web pages.

Similarly, we investigate the impact of data freshness on op-
eration recognition as well. We collect another 500 testing sam-
ples 20 days after collecting the training samples. Based on which,
MagAttack shows an average accuracy of 73.7% as revealed in “Old
Data” in Fig. 11(b). The reason accounts for the performance de-
crease is that most web pages, unlike applications, update their page
components on a daily basis. These modified web page components
impact the EM signals captured on different days, and thus cause
performance decrease.

5.6 Scalability of MagAttack
In addition to the performance of application and operation recog-
nition, we investigate the scalability of MagAttack on various op-
erating systems and attack devices. Specifically, we utilize a target
device with operating systems other than Mac OS, and an attack
device other than iPhone to perform user application recognition.

5.6.1 Impact of Different Operating Systems. To evaluate it, we
conduct experiments on a Lenovo T440p laptop with a Windows
OS. Similarly, we collect 50 samples for each of the following 10
popular applications available on Windows OS: PowerPoint (P),
Word (W), Excel (E), Chrome (C), Internet Explorer (X), Skype (K),
KuGou (G), Windows Media Player (R), Adobe Reader (A) and MAT-
LAB (B), and employ the 10-fold cross validation to evaluate the
recognition performance. The results shown in Fig. 12 demonstrate
that MagAttack works well on the Windows OS, with an average
recognition accuracy of 97.8%. Thus, we have reason to believe that
MagAttack is OS-independent and can attack laptops with different
operating systems.

5.6.2 Impact of Different Attack Devices. To evaluate it, we use
two different mobile phones, i.e., an iPhone SE and a Nexus 5 in
Tab. 3, to track the same laptop at the same time. We collect 50
samples for each of the 10 applications and draw the EM signals of
two applications (Microsoft Word and VLC player) recorded by two
smartphones in Fig. 13 for illustration. From the results we can ob-
serve that EM signals of the same application recorded by different
smartphones are quite similar. To quantitatively evaluate the im-
pact of different attack devices, we train the system using samples
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(a) Microsoft Word

(b) VLC Player

Figure 13: EM signals collected using different phones.

collected by one smartphone, and test it with samples collected by
the other device. Since the iPhone SE has a sampling rate of 100 Hz
while the Nexus 5 only has 50 Hz, we down-sample the EM signals
collected by the iPhone SE to achieve the same sampling rate. The
classification results demonstrate that MagAttack can achieve an
accuracy of 98% in the aforementioned case. Thus, we believe that
MagAttack is independent on the model of attack devices as well
as the sampling rate of magnetometers.

6 DISCUSSION
In this section, we discuss the defense countermeasure of
MagAttack, and the limitations of our system.

6.1 Defense
We propose two defense strategies against MagAttack from both
the hardware and software perspectives.

Hardware-based Defense. One condition that enables
MagAttack is that the laptop CPU leaks EM emissions which
can be captured by a vicinal magnetic sensor. To address it, the
electromagnetic shielding on laptops can be enhanced. For instance,
the CPU and other vital components can be shielded with metal
films, which may reduce a majority of the EM leakage.

Software-based Defense. The root cause of MagAttack is that
various instructions generate different EM signals that in turn can
be utilized to differentiate user activities. To defend MagAttack, a
group of stochastic instructions can be executed by the CPU in the
background, which may add random noise to the EM signals gener-
ated by user activities, thus interfere the recognition of MagAttack.

6.2 Limitations
Our implementation of MagAttack based on existing hardware
has three main limitations. First, the attack distance between the
laptop and the mobile device is close, in terms of 3 centimeters.

Due to the limited sensitivity of the built-in magnetometer in the
mobile devices on today’s market, the captured EM signals from
the COTS mobile device become too weak after moving the mobile
device further away from the laptop. We envision that COTS mobile
devices can be equipped with better sensors in the future.

Second, our algorithms may need to be re-trained in case of
different CPU architectures or operating systems. We envision
that robust features across laptops of different CPUs and various
operating systems may be discovered in the future.

Third, currently our method works when one application or
operation is performed at a time. We envision that new techniques
for recognizing concurrent multiple activities may be developed
in the future. We hope this work can attract more effort from the
community to explore this field which has not been well studied
yet.

7 RELATEDWORK
Side-channel Attacks Based on EM Emissions. Pioneer work
using EM leakage as the side-channel usually requires customized
hardware to capture EM emissions [7, 12, 13, 25, 26]. Genkin et al.
extract the key of RSA software implementation on a Lenovo laptop
using a near-field magnetic probe with a frequency of around 100
kHz [12, 13]. Vaucelle et al. detect the existence of ambient electro-
magnetic fields using a magnetometer bracelet with a frequency of
up to 50 kHz [25]. Chen et al. detect the usage of electrical appliances
by monitoring the device electromagnetic interference (EMI) radia-
tions with an expensive EMI measurement equipment [7]. Chen’s
scheme works only when the laptop is electrically connected to a
power line interface, which is plugged in the wall outlet. Wang et
al. recognize the electrical appliance usage using a wrist-worn mag-
netic sensor and a set of data acquisition device, with a sampling
rate of 16-bit resolution at 44.1 kHz [26]. In comparison, MagAttack
uses magnetometers in the COTS smartphones with a sampling
rate of around 100 Hz to detect and recognize user activities on a
vicinal laptop. Biedermann et al. present a class of EM side-channel
attacks on computer hard drives using smartphone magnetic field
sensors [4], which is the most related work of MagAttack. Bieder-
mann’s scheme detects what type of the operating system is booting
up or what application is being started based on the ongoing opera-
tions of hard drives, and thus cannot work for applications without
disk operations. Furthermore, they haven’t presented the underly-
ing principle that enables those attacks. In comparison, MagAttack
works for any user applications or operations, and investigates the
feasibility of such attacks from a view of CPU instructions.

Side-channel Attacks UsingMobile Devices. Prior work has
demonstrated a number of side-channel attacks using the sensors
in COTS mobile devices [3, 5, 22, 30, 31]. Xu et al. and Schlegel
et al. show side-channel attacks using cameras [30] and micro-
phones [22], respectively. Cai et al. and Aviv et al. show that motion
sensors in mobile phones, such as accelerometers and gyroscopes,
can be used to learn the user tapping and gesture input [3, 5]. Jana et
al. recognize web pages that a user browses by tracking the mem-
ory footprint variations of the browser on Android [17], which
is intrusive since the attackers need to login to the system as a
process running in parallel with the browser. These attacks are

Session 4A: Mobile Security AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

293



used to breach the privacy of the mobile device user. In compari-
son, MagAttack breaches the privacy of a laptop user. Zhang et al.
exploit smartphone magnetometers to recognize nearby household
appliances [31]. In comparison, MagAttack aims to infer informa-
tion regarding nearby laptop user’s activities.

Side-channel Attacks on Recognizing Laptop User Activi-
ties. Prior work has exploited other forms of side-channels than
EM emissions for laptop user activity recognition. Zhuang et al.
and Zhu et al. use acoustic signals as the side-channel informa-
tion to infer user keystrokes [32, 33]. Clark et al. utilize the AC
power consumption of a laptop to recognize the web page that
a user browses [8]. Clark’s scheme requires the modification of
the power outlet for measuring AC power consumption. Lu et al.
tap the encrypted web traffic to recognize the web page that a
user browses [19]. In comparison, MagAttack uses EM emissions
as the side-channel information, which is non-intrusive and can
be implemented on the COTS mobile devices without hardware
modification.

8 CONCLUSION
In this paper, we propose MagAttack, which demonstrates the fea-
sibility of using a COTS mobile device to infer user activities on
a nearby laptop based on the EM side-channel leakage from the
laptop’s CPU. We implement MagAttack on the COTS smartphones
without hardware modification and evaluate it with 13 commonly
used applications and 50 top popular web pages in China. The ex-
perimental results show that MagAttack can conduct launching
detection, application recognition, and operation recognition with
high accuracy.

Future directions include designing specialized hardware to en-
large the detection distance and exploiting robust features across
various application versions.
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